Closed‐loop one‐way‐travel‐time navigation using low‐grade odometry for autonomous underwater vehicles
This paper extends the progress of single beacon one‐way‐travel‐time (OWTT) range measurements for constraining XY position for autonomous underwater vehicles (AUV). Traditional navigation algorithms have used OWTT measurements to constrain an inertial navigation system aided by a Doppler Velocity L...
Saved in:
Published in: | Journal of field robotics Vol. 35; no. 4; pp. 421 - 434 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken
Wiley Subscription Services, Inc
01-06-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper extends the progress of single beacon one‐way‐travel‐time (OWTT) range measurements for constraining XY position for autonomous underwater vehicles (AUV). Traditional navigation algorithms have used OWTT measurements to constrain an inertial navigation system aided by a Doppler Velocity Log (DVL). These methodologies limit AUV applications to where DVL bottom‐lock is available as well as the necessity for expensive strap‐down sensors, such as the DVL. Thus, deep water, mid‐water column research has mostly been left untouched, and vehicles that need expensive strap‐down sensors restrict the possibility of using multiple AUVs to explore a certain area. This work presents a solution for accurate navigation and localization using a vehicle's odometry determined by its dynamic model velocity and constrained by OWTT range measurements from a topside source beacon as well as other AUVs operating in proximity. We present a comparison of two navigation algorithms: an Extended Kalman Filter (EKF) and a Particle Filter(PF). Both of these algorithms also incorporate a water velocity bias estimator that further enhances the navigation accuracy and localization. Closed‐loop online field results on local waters as well as a real‐time implementation of two days field trials operating in Monterey Bay, California during the Keck Institute for Space Studies oceanographic research project prove the accuracy of this methodology with a root mean square error on the order of tens of meters compared to GPS position over a distance traveled of multiple kilometers. |
---|---|
ISSN: | 1556-4959 1556-4967 |
DOI: | 10.1002/rob.21746 |