Saccharomyces cerevisiae GPI10, the functional homologue of human PIG-B, is required for glycosylphosphatidylinositol-anchor synthesis
An increasing number of plasma membrane proteins have been shown to be attached to the membrane via a glycosylphosphatidylinositol (GPI) moiety. All eukaryotes share a highly conserved GPI-core structure EthN-P-Man3-GlcN-PI, where EthN is ethanolamine. We have identified a protein encoded by the yea...
Saved in:
Published in: | Biochemical journal Vol. 332 ( Pt 1); no. 1; pp. 153 - 159 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
15-05-1998
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An increasing number of plasma membrane proteins have been shown to be attached to the membrane via a glycosylphosphatidylinositol (GPI) moiety. All eukaryotes share a highly conserved GPI-core structure EthN-P-Man3-GlcN-PI, where EthN is ethanolamine. We have identified a protein encoded by the yeast open reading frame YGL142C that shares 33% identity with the human Pig-B protein. Deletion of this essential gene leads to a block in GPI anchor biosynthesis. We therefore named the gene GPI10. Gpi10p and Pig-B are functional homologues and the lethal deletion of GPI10 can be rescued by expression of the PIG-B cDNA. As found for PIG-B mutant cells, gpi10 deletant cells cannot attach the third mannose in an alpha-1,2 linkage to the GPI core-structure intermediate. Overexpression of GPI10 gives partial resistance to the GPI-synthesis inhibitor YW3548, suggesting that this gene product may affect the target of the inhibitor. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0264-6021 1470-8728 |
DOI: | 10.1042/bj3320153 |