Bi2MoO6/BiFeO3 heterojunction nanofibers: Enhanced photocatalytic activity, charge separation mechanism and magnetic separability

[Display omitted] Uniform Bi2MoO6 nanosheets were grown in a high dispersed fashion on electrospun BiFeO3 nanofibers via a solvothermal technique. The loading amount of Bi2MoO6 in the Bi2MoO6/BiFeO3 heterojunction nanofibers could be controlled by adjusting the precursor concentrations in the solvot...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science Vol. 529; pp. 404 - 414
Main Authors: Tao, Ran, Shao, Changlu, Li, Xinghua, Li, Xiaowei, Liu, Shuai, Yang, Shu, Zhao, Chengcheng, Liu, Yichun
Format: Journal Article
Language:English
Published: Elsevier Inc 01-11-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Uniform Bi2MoO6 nanosheets were grown in a high dispersed fashion on electrospun BiFeO3 nanofibers via a solvothermal technique. The loading amount of Bi2MoO6 in the Bi2MoO6/BiFeO3 heterojunction nanofibers could be controlled by adjusting the precursor concentrations in the solvothermal process. The XPS analysis, energy band position calculation and trapping experiments all proved that the Bi2MoO6/BiFeO3 heterojunction is a Z-scheme heterojunction. The Z-scheme Bi2MoO6/BiFeO3 heterojunction had a much higher photocatalytic activity in the visible-light photodegradation of Rhodamine B (RhB) and tetracycline hydrochloride (TC) than pure BiFeO3 nanofibers or pure Bi2MoO6 nanosheets. The enhanced photocatalytic activity was attributed to the formation of Z-scheme Bi2MoO6/BiFeO3 heterojunctions, which could be beneficial to the separation of photogenerated electron-hole pairs. Moreover, the Bi2MoO6/BiFeO3 heterojunction nanofibers could be easily separated under an external magnetic field via the ferromagnetic BiFeO3. After several cycles, the photocatalytic activity of the Bi2MoO6/BiFeO3 heterojunction no longer significantly decreased suggesting that the Bi2MoO6/BiFeO3 heterojunction is stable. These Z-scheme Bi2MoO6/BiFeO3 heterojunction nanofibers with highly visible-light photocatalytic activity, excellent chemical stability and magnetic separability could be useful in many practical applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2018.06.035