Performance of Vegetation Indices to Estimate Green Biomass Accumulation in Common Bean

Remote sensing technology applied to agricultural crops has emerged as an efficient tool to speed up the data acquisition process in decision-making. In this study, we aimed to evaluate the performance of the Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Red Edge (NDRE)...

Full description

Saved in:
Bibliographic Details
Published in:AgriEngineering Vol. 5; no. 2; pp. 840 - 854
Main Authors: Barboza, Thiago Orlando Costa, Ardigueri, Matheus, Souza, Guillerme Fernandes Castro, Ferraz, Marcelo Araújo Junqueira, Gaudencio, Josias Reis Flausino, Santos, Adão Felipe dos
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-06-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Remote sensing technology applied to agricultural crops has emerged as an efficient tool to speed up the data acquisition process in decision-making. In this study, we aimed to evaluate the performance of the Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Red Edge (NDRE) in estimating biomass accumulation in common bean crops. The research was conducted at the Federal University of Lavras, where the ANFC 9 cultivar was used in an area of approximately seven hectares, in a second crop, in 2022. A total of 31 georeferenced points spaced at 50 m were chosen to evaluate height, width and green biomass, with collections on days 15, 27, 36, 58, 62 and 76 of the crop cycle. The images used in the study were obtained from the PlanetScope CubeSat satellite, with a spatial resolution of 3 m. The data obtained were subjected to a Pearson correlation (R) test and multiple linear regression analysis. The green biomass variable was significantly correlated with plant height and width. The NDVI performed better than the NDRE, with higher values observed at 62 Days After Sowing (DAS). The model that integrates the parameters of height, width and NDVI was the one that presented the best estimate for green biomass in the common bean crop. The M1 model showed the best performance to estimate green biomass during the initial stage of the crop, at 15, 27 and 36 DAS (R2 = 0.93). These results suggest that remote sensing technology can be effectively applied to assess biomass accumulation in common bean crops and provide accurate data for decision-makers.
ISSN:2624-7402
2624-7402
DOI:10.3390/agriengineering5020052