Exploration of neuroanatomical characteristics to differentiate prodromal Alzheimer’s disease from cognitively unimpaired amyloid-positive individuals
Differentiating clinical stages based solely on positive findings from amyloid PET is challenging. We aimed to investigate the neuroanatomical characteristics at the whole-brain level that differentiate prodromal Alzheimer’s disease (AD) from cognitively unimpaired amyloid-positive individuals (CU A...
Saved in:
Published in: | Scientific reports Vol. 14; no. 1; p. 10083 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
02-05-2024
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Differentiating clinical stages based solely on positive findings from amyloid PET is challenging. We aimed to investigate the neuroanatomical characteristics at the whole-brain level that differentiate prodromal Alzheimer’s disease (AD) from cognitively unimpaired amyloid-positive individuals (CU A+) in relation to amyloid deposition and regional atrophy. We included 45 CU A+ participants and 135 participants with amyloid-positive prodromal AD matched 1:3 by age, sex, and education. All participants underwent
18
F-florbetaben positron emission tomography and 3D structural T1-weighted magnetic resonance imaging. We compared the standardized uptake value ratios (SUVRs) and volumes in 80 regions of interest (ROIs) between CU A+ and prodromal AD groups using independent t-tests, and employed the least absolute selection and shrinkage operator (LASSO) logistic regression model to identify ROIs associated with prodromal AD in relation to amyloid deposition, regional atrophy, and their interaction. After applying False Discovery Rate correction at < 0.1, there were no differences in global and regional SUVR between CU A+ and prodromal AD groups. Regional volume differences between the two groups were observed in the amygdala, hippocampus, entorhinal cortex, insula, parahippocampal gyrus, and inferior temporal and parietal cortices. LASSO logistic regression model showed significant associations between prodromal AD and atrophy in the entorhinal cortex, inferior parietal cortex, both amygdalae, and left hippocampus. The mean SUVR in the right superior parietal cortex (beta coefficient = 0.0172) and its interaction with the regional volume (0.0672) were also selected in the LASSO model. The mean SUVR in the right superior parietal cortex was associated with an increased likelihood of prodromal AD (Odds ratio [OR] 1.602, p = 0.014), particularly in participants with lower regional volume (OR 3.389, p < 0.001). Only regional volume differences, not amyloid deposition, were observed between CU A+ and prodromal AD. The reduced volume in the superior parietal cortex may play a significant role in the progression to prodromal AD through its interaction with amyloid deposition in that region. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-60843-8 |