Deeper Central Reaming May Enhance Initial Acetabular Shell Fixation
The initial stability of press-fit acetabular components is partially determined by the reaming technique. Nonhemispherical (NHS) acetabular shells, which have a larger radius at the rim than the dome, often require larger reaming preparations than the same-sized hemispherical (HS) shells. Furthermo...
Saved in:
Published in: | Arthroplasty today Vol. 6; no. 3; pp. 343 - 349 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
01-09-2020
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The initial stability of press-fit acetabular components is partially determined by the reaming technique. Nonhemispherical (NHS) acetabular shells, which have a larger radius at the rim than the dome, often require larger reaming preparations than the same-sized hemispherical (HS) shells. Furthermore, deeper central reaming may provide a more stable press fit. Using a reproducible, in vitro protocol, we compared initial shell stability under different reaming techniques with HS and NHS acetabular components.
Cavities for 54-mm NHS and 56-mm HS acetabular components were premachined in 20-pcf Sawbones blocks. Acetabular cavities included diameters of 54, 55, “54+,” and “55+”. “+” indicates a cavity with a 2-mm smaller diameter that is 2-mm deeper. A 4750N statically applied force seated shells to a height that was comparable with shell height after an orthopaedic surgeon’s manual impaction. Force required to dislodge shells was assessed via a straight torque-out with a linear load.
Increased preparation depth (+) was associated with deeper shell seating in all groups. Deeper central reaming increased required lever-out force for all groups. Overall, HS and NHS implants prepared with 55 + preparation had the highest lever-out forces, although this was not significantly higher than those with 54+.
In 20-pcf Sawbones, representing dense bone, overreaming depth by 1-mm improved initial seating measurements. In both HS and NHS acetabular shells, seating depth and required lever-out force were higher in the “+” category. It is unclear, however, whether a decreased diameter ream increased seating stability (55+ vs 54+). Clinically, this deeper central reaming technique may help initial acetabular stability. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2352-3441 2352-3441 |
DOI: | 10.1016/j.artd.2020.03.012 |