Planetary gearbox fault diagnosis using an adaptive stochastic resonance method

Planetary gearboxes are widely used in aerospace, automotive and heavy industry applications due to their large transmission ratio, strong load-bearing capacity and high transmission efficiency. The tough operation conditions of heavy duty and intensive impact load may cause gear tooth damage such a...

Full description

Saved in:
Bibliographic Details
Published in:Mechanical systems and signal processing Vol. 38; no. 1; pp. 113 - 124
Main Authors: Lei, Yaguo, Han, Dong, Lin, Jing, He, Zhengjia
Format: Journal Article
Language:English
Published: Elsevier Ltd 05-07-2013
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Planetary gearboxes are widely used in aerospace, automotive and heavy industry applications due to their large transmission ratio, strong load-bearing capacity and high transmission efficiency. The tough operation conditions of heavy duty and intensive impact load may cause gear tooth damage such as fatigue crack and teeth missed etc. The challenging issues in fault diagnosis of planetary gearboxes include selection of sensitive measurement locations, investigation of vibration transmission paths and weak feature extraction. One of them is how to effectively discover the weak characteristics from noisy signals of faulty components in planetary gearboxes. To address the issue in fault diagnosis of planetary gearboxes, an adaptive stochastic resonance (ASR) method is proposed in this paper. The ASR method utilizes the optimization ability of ant colony algorithms and adaptively realizes the optimal stochastic resonance system matching input signals. Using the ASR method, the noise may be weakened and weak characteristics highlighted, and therefore the faults can be diagnosed accurately. A planetary gearbox test rig is established and experiments with sun gear faults including a chipped tooth and a missing tooth are conducted. And the vibration signals are collected under the loaded condition and various motor speeds. The proposed method is used to process the collected signals and the results of feature extraction and fault diagnosis demonstrate its effectiveness. ► An adaptive stochastic resonance method is proposed to extract weak features. ► Ant colony algorithms are utilized to optimize stochastic resonance parameters. ► The experimental results demonstrate the effectiveness of the proposed method.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0888-3270
1096-1216
DOI:10.1016/j.ymssp.2012.06.021