Theoretical enhancement of solar cell efficiency by the application of an ideal ‘down-shifting’ thin film
Poor ultraviolet (UV) quantum conversion efficiency contributes to a reduction in the efficiency of silicon based photovoltaic cells. In the UV, the main loss mechanism is through surface recombination of photo-generated carriers due to the shallow absorption depth of high energy photons. One method...
Saved in:
Published in: | Solar energy materials and solar cells Vol. 98; pp. 455 - 464 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Amsterdam
Elsevier B.V
01-03-2012
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Poor ultraviolet (UV) quantum conversion efficiency contributes to a reduction in the efficiency of silicon based photovoltaic cells. In the UV, the main loss mechanism is through surface recombination of photo-generated carriers due to the shallow absorption depth of high energy photons. One method for greater utilisation of the UV region is by down-shifting UV photons to lower energies where the quantum efficiency of silicon is higher. This work determines the potential enhancement in efficiency that can be obtained by a luminescent down-shifting layer applied to silicon based solar cells. The efficiency is determined through detailed balance arguments. The maximum calculated efficiency enhancement due to an ideal down shifting process is 0.6% absolute using the AM1.5G standard spectra. Applying a similar analysis to a multicrystalline silicon solar cell results in an efficiency enhancement due to the down-shifting process of 0.17% absolute.
► Theoretical analysis of UV down-shifting applied to Si solar Cells. ► Efficiency is determined via detailed balance. ► Abeles' relations are used to model multiple optical layers. ► Optical layers are optimised for cell efficiency and down-shifting. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0927-0248 1879-3398 |
DOI: | 10.1016/j.solmat.2011.11.027 |