Overproduction and characterization of the first enzyme of a new aldoxime dehydratase family in Bradyrhizobium sp

Almost 100 genes within the genus Bradyrhizobium are known to potentially encode aldoxime dehydratases (Oxds), but none of the corresponding proteins have been characterized yet. Aldoximes are natural substances involved in plant defense and auxin synthesis, and Oxds are components of enzymatic casc...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules Vol. 115; pp. 746 - 753
Main Authors: Rädisch, Robert, Chmátal, Martin, Rucká, Lenka, Novotný, Petr, Petrásková, Lucie, Halada, Petr, Kotik, Michael, Pátek, Miroslav, Martínková, Ludmila
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01-08-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Almost 100 genes within the genus Bradyrhizobium are known to potentially encode aldoxime dehydratases (Oxds), but none of the corresponding proteins have been characterized yet. Aldoximes are natural substances involved in plant defense and auxin synthesis, and Oxds are components of enzymatic cascades enabling bacteria to transform, utilize and detoxify them. The aim of this work was to characterize a representative of the highly conserved Oxds in Bradyrhizobium spp. which include both plant symbionts and members of the soil communities. The selected oxd gene from Bradyrhizobium sp. LTSPM299 was expressed in Escherichia coli, and the corresponding gene product (OxdBr1; GenBank: WP_044589203) was obtained as an N-His6-tagged protein (monomer, 40.7 kDa) with 30–47% identity to Oxds characterized previously. OxdBr1 was most stable at pH ca. 7.0–8.0 and at up to 30 °C. As substrates, the enzyme acted on (aryl)aliphatic aldoximes such as E/Z-phenylacetaldoxime, E/Z-2-phenylpropionaldoxime, E/Z-3-phenylpropionaldoxime, E/Z-indole-3-acetaldoxime, E/Z-propionaldoxime, E/Z-butyraldoxime, E/Z-valeraldoxime and E/Z-isovaleraldoxime. Some of the reaction products of OxdBr1 are substrates of nitrilases occurring in the same genus. Regions upstream of the oxd gene contained genes encoding a putative aliphatic nitrilase and its transcriptional activator, indicating the participation of OxdBr1 in the metabolic route from aldoximes to carboxylic acids.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2018.04.103