Variability regions for certain families of harmonic univalent mappings

Let be the class of analytic functions h in the unit disk . Fix h ∈  with h(0) = h′(0) − 1 = 0 satisfying Re h′(z) > 0 in . For b ∈  , we consider the sets For fixed z 0  ∈   \ {0} and b ∈  , we study in this article the regions of variabilities of the sets V 0 (z 0 , b) = {g(z 0 ) : g ∈ ℬ(h, b)}...

Full description

Saved in:
Bibliographic Details
Published in:Complex variables and elliptic equations Vol. 58; no. 1; pp. 23 - 34
Main Authors: Ponnusamy, S., Yamamoto, H., Yanagihara, H.
Format: Journal Article
Language:English
Published: Colchester Taylor & Francis Group 01-01-2013
Taylor & Francis Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let be the class of analytic functions h in the unit disk . Fix h ∈  with h(0) = h′(0) − 1 = 0 satisfying Re h′(z) > 0 in . For b ∈  , we consider the sets For fixed z 0  ∈   \ {0} and b ∈  , we study in this article the regions of variabilities of the sets V 0 (z 0 , b) = {g(z 0 ) : g ∈ ℬ(h, b)} and V 1 (z 0 , b) = {g′(z 0 ) : g ∈ ℬ(h, b)}. The problem originated from the class of harmonic univalent mappings of the unit disk.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1747-6933
1747-6941
DOI:10.1080/17476933.2010.551200