Hippocampal gene expression profiling across eight mouse inbred strains: towards understanding the molecular basis for behaviour

Mouse inbred strains differ in many aspects of their phenotypes, and it is known that gene expression does so too. This gives us an opportunity to isolate the genetic aspect of variation in expression and compare it to other phenotypic variables. We have investigated these issues using an eight‐stra...

Full description

Saved in:
Bibliographic Details
Published in:The European journal of neuroscience Vol. 19; no. 9; pp. 2576 - 2582
Main Authors: Fernandes, Cathy, Paya-Cano, Jose L., Sluyter, Frans, D'Souza, Ursula, Plomin, Robert, Schalkwyk, Leonard C.
Format: Journal Article
Language:English
Published: Oxford, UK Blackwell Science Ltd 01-05-2004
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mouse inbred strains differ in many aspects of their phenotypes, and it is known that gene expression does so too. This gives us an opportunity to isolate the genetic aspect of variation in expression and compare it to other phenotypic variables. We have investigated these issues using an eight‐strain expression profile comparison with four replicates per strain on Affymetrix MGU74av2 GeneChips focusing on one well‐defined brain tissue (the hippocampus). We identified substantial strain‐specific variation in hippocampal gene expression, with more than two hundred genes showing strain differences by a very conservative criterion. Many such genetically driven differences in gene expression are likely to result in functional differences including differences in behaviour. A large panel of inbred strains could be used to identify genes functionally involved in particular phenotypes, similar to genetic correlation. The genetic correlation between expression profiles and function is potentially very powerful, especially given the current large‐scale generation of phenotypic data on multiple strains (the Mouse Phenome Project). As an example, the strongest genetic correlation between more than 200 probe sets showing significant differences among our eight inbred strains and a ranking of these strains by aggression phenotype was found for Comt, a gene known to be involved in aggression.
Bibliography:istex:AF0A06A5682519C266C6F6A7544CC4CD30250149
ark:/67375/WNG-V3FWHMW4-W
ArticleID:EJN3358
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0953-816X
1460-9568
DOI:10.1111/j.0953-816X.2004.03358.x