Fe‐CoP Electrocatalyst Derived from a Bimetallic Prussian Blue Analogue for Large‐Current‐Density Oxygen Evolution and Overall Water Splitting

Industrial application of overall water splitting requires developing readily available, highly efficient, and stable oxygen evolution electrocatalysts that can efficiently drive large current density. This study reports a facile and practical method to fabricate a non‐noble metal catalyst by direct...

Full description

Saved in:
Bibliographic Details
Published in:Advanced science Vol. 5; no. 10; pp. 1800949 - n/a
Main Authors: Cao, Li‐Ming, Hu, Yu‐Wen, Tang, Shang‐Feng, Iljin, Andrey, Wang, Jia‐Wei, Zhang, Zhi‐Ming, Lu, Tong‐Bu
Format: Journal Article
Language:English
Published: Germany John Wiley and Sons Inc 01-10-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Industrial application of overall water splitting requires developing readily available, highly efficient, and stable oxygen evolution electrocatalysts that can efficiently drive large current density. This study reports a facile and practical method to fabricate a non‐noble metal catalyst by directly growing a Co‐Fe Prussian blue analogue on a 3D porous conductive substrate, which is further phosphorized into a bifunctional Fe‐doped CoP (Fe‐CoP) electrocatalyst. The Fe‐CoP/NF (nickel foam) catalyst shows efficient electrocatalytic activity for oxygen evolution reaction, requiring low overpotentials of 190, 295, and 428 mV to achieve 10, 500, and 1000 mA cm−2 current densities in 1.0 m KOH solution. In addition, the Fe‐CoP/NF can also function as a highly active electrocatalyst for hydrogen evolution reaction with a low overpotential of 78 mV at 10 mA cm−2 current density in alkaline solution. Thus, the Fe‐CoP/NF electrode with meso/macropores can act as both an anode and a cathode to fabricate an electrolyzer for overall water splitting, only requiring a cell voltage of 1.49 V to afford a 10 mA cm−2 current density with remarkable stability. This performance appears to be among the best reported values and is much better than that of the IrO2‐Pt/C‐based electrolyzer. A gentle and practical pathway is reported to fabricate efficient, non‐noble metal catalyst by directly growing a bimetallic prussian blue analogue 3D conductive substrate, phosphorized into a 3D bifunctional hierarchical‐pore Fe‐CoP electrocatalyst. The as‐obtained Fe‐CoP can drive large‐current‐density oxygen evolution and efficiently catalyze overall water splitting.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2198-3844
2198-3844
DOI:10.1002/advs.201800949