Electrophysiologic and molecular properties of cultured enteric glia

Enteric glia, the support cells of myenteric ganglia, have been widely studied with respect to their morphology and immunohistochemical phenotype, but little is known about their functional properties. We developed a method for the amplification of enteric glia from newborn guinea pigs to further ch...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neuroscience research Vol. 34; no. 1; p. 24
Main Authors: Broussard, D L, Bannerman, P G, Tang, C M, Hardy, M, Pleasure, D
Format: Journal Article
Language:English
Published: United States 01-01-1993
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Enteric glia, the support cells of myenteric ganglia, have been widely studied with respect to their morphology and immunohistochemical phenotype, but little is known about their functional properties. We developed a method for the amplification of enteric glia from newborn guinea pigs to further characterize these cells. Treatment with a combination of basic fibroblast growth factor and the adenylate cyclase activator, cholera toxin, permitted expansion of enteric glial cultures to confluence and serial passage for up to 8 months. The long-term cultured cells retained expression of 1) S100 protein, 2) GD3 ganglioside recognized by the monoclonal antibody LB1, and 3) the gene encoding glutamine synthetase. The electrophysiologic properties of cultured enteric glia were studied under whole-cell patch clamp conditions. Most cells expressed "delayed rectifier"-type potassium currents, and some also demonstrated tetrodotoxin-sensitive sodium currents. Other subsets of voltage-dependent potassium currents, calcium currents, and glutamate-gated currents were not demonstrable.
ISSN:0360-4012
DOI:10.1002/jnr.490340104