Post-Translational Regulation of the Dicing Activities of Arabidopsis DICER-LIKE 3 and 4 by Inorganic Phosphate and the Redox State
In Arabidopsis thaliana, small interfering RNAs (siRNAs) generated by two Dicer isoforms, DCL3 and DCL4, function in distinct epigenetic processes, i.e. RNA-directed DNA methylation and post-transcriptional gene silencing, respectively. Plants often respond to their environment by producing a distin...
Saved in:
Published in: | Plant and cell physiology Vol. 58; no. 3; pp. 485 - 495 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Japan
01-03-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In Arabidopsis thaliana, small interfering RNAs (siRNAs) generated by two Dicer isoforms, DCL3 and DCL4, function in distinct epigenetic processes, i.e. RNA-directed DNA methylation and post-transcriptional gene silencing, respectively. Plants often respond to their environment by producing a distinct set of small RNAs; however, the mechanism for controlling the production of different siRNAs from the same dsRNA substrate remains unclear. We established a simple biochemical method to visualize the dsRNA-cleaving activities of DCL3 and DCL4 in cell-free extracts prepared from Arabidopsis seedlings. Here, we demonstrate that different nutrient statuses of a host plant affect the post-translational regulation of the dicing activity of DCL3 and DCL4. Phosphate deficiency inhibited DCL3, and the activity of DCL3 was directly activated by inorganic phosphate. Sulfur deficiency inhibited DCL4 but not DCL3, and the activity of DCL4 was recovered by supplementation of the cell-free extracts with reductants containing a thiol group. Immunopurified DCL4 was activated by recombinant Arabidopsis thioredoxin-h1 with dithiothreitol. Therefore, DCL4 is subject to redox regulation. These results demonstrate that post-translational regulation of DCL activities fine-tunes the balance between branches of the gene silencing pathway according to the growth environment. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0032-0781 1471-9053 |
DOI: | 10.1093/pcp/pcw226 |