A two-stage linear discriminant analysis via QR-decomposition

Linear discriminant analysis (LDA) is a well-known method for feature extraction and dimension reduction. It has been used widely in many applications involving high-dimensional data, such as image and text classification. An intrinsic limitation of classical LDA is the so-called singularity problem...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 27; no. 6; pp. 929 - 941
Main Authors: Ye, Jieping, Li, Qi
Format: Journal Article
Language:English
Published: Los Alamitos, CA IEEE 01-06-2005
IEEE Computer Society
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Linear discriminant analysis (LDA) is a well-known method for feature extraction and dimension reduction. It has been used widely in many applications involving high-dimensional data, such as image and text classification. An intrinsic limitation of classical LDA is the so-called singularity problems; that is, it fails when all scatter matrices are singular. Many LDA extensions were proposed in the past to overcome the singularity problems. Among these extensions, PCA+LDA, a two-stage method, received relatively more attention. In PCA+LDA, the LDA stage is preceded by an intermediate dimension reduction stage using principal component analysis (PCA). Most previous LDA extensions are computationally expensive, and not scalable, due to the use of singular value decomposition or generalized singular value decomposition. In this paper, we propose a two-stage LDA method, namely LDA/QR, which aims to overcome the singularity problems of classical LDA, while achieving efficiency and scalability simultaneously. The key difference between LDA/QR and PCA+LDA lies in the first stage, where LDA/QR applies QR decomposition to a small matrix involving the class centroids, while PCA+LDA applies PCA to the total scatter matrix involving all training data points. We further justify the proposed algorithm by showing the relationship among LDA/QR and previous LDA methods. Extensive experiments on face images and text documents are presented to show the effectiveness of the proposed algorithm.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2005.110