Electrochemical performance of low temperature fluorinated graphites used as cathode in primary lithium batteries
The present study highlights the electrochemical performance of two series of fluorinated graphites used as the cathode in primary lithium batteries. These compounds were prepared under fluorine gas at room temperature using a catalytic atmosphere made of boron or chlorine fluoride, and then thermal...
Saved in:
Published in: | Carbon (New York) Vol. 44; no. 12; pp. 2543 - 2548 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article Conference Proceeding |
Language: | English |
Published: |
Oxford
Elsevier Ltd
01-10-2006
Elsevier Science |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The present study highlights the electrochemical performance of two series of fluorinated graphites used as the cathode in primary lithium batteries. These compounds were prepared under fluorine gas at room temperature using a catalytic atmosphere made of boron or chlorine fluoride, and then thermally treated between 100 and 600
°C. The electrochemical properties are correlated to a complete physico-chemical characterization, already performed by XRD, NMR, FT-IR and EPR. In particular, important parameters are taken into account: C–F bonding, carbon hybridization, fluorine content (i.e. F/C ratio) and amount of intercalated catalyst residues. It is shown that the average discharge potential of fluorinated graphite used in primary lithium batteries can be predicted owing to the chemical shift values (
δ
C–F) obtained by solid
13C NMR. On the other hand, the higher capacity values are achieved for low temperature fluorinated graphite treated at the highest temperatures, i.e. for high fluorination level. The electrochemical performance study of these materials is completed by the study of the effect of simulated storage. The differences between the various samples during electrochemical tests and those observed using different electrolytes are discussed. Fluorinated graphites obtained with a chlorine catalyst or post-treated at temperatures higher than 450
°C are unaffected by ageing. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0008-6223 1873-3891 |
DOI: | 10.1016/j.carbon.2006.05.013 |