Biotransformation of 4-halophenols to 4-halocatechols using Escherichia coli expressing 4-hydroxyphenylacetate 3-hydroxylase

Escherichia coli cells, expressing 4-hydroxyphenylacetate 3-hydroxylase, fully transformed 4-halogenated phenols to their equivalent catechols as single products in shaken flasks. 4-Fluorophenol was transformed at a rate 1.6, 1.8, and 3.4-fold higher than the biotransformation of 4-chloro-, 4-bromo-...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology Vol. 89; no. 6; pp. 1867 - 1875
Main Authors: Coulombel, Lydie, Nolan, Louise C., Nikodinovic, Jasmina, Doyle, Evelyn M., O’Connor, Kevin E.
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer-Verlag 01-03-2011
Springer
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Escherichia coli cells, expressing 4-hydroxyphenylacetate 3-hydroxylase, fully transformed 4-halogenated phenols to their equivalent catechols as single products in shaken flasks. 4-Fluorophenol was transformed at a rate 1.6, 1.8, and 3.4-fold higher than the biotransformation of 4-chloro-, 4-bromo-, and 4-iodo-phenol, respectively. A scale-up from shaken flask to a 5 L stirred tank bioreactor was undertaken to develop a bioprocess for the production of 4-substituted halocatechols at higher concentrations and scale. In a stirred tank reactor, the optimized conditions for induction of 4-HPA hydroxylase expression were at 37 °C for 3 h. The rate of biotransformation of 4-fluorophenol to 4-fluorocatechol by stirred tank bioreactor grown cells was the same at 1 and 4.8 mM (5.13 μmol/min/g CDW) once the ratio of biocatalyst ( E. coli CDW) to substrate concentration (mM) was maintained at 2:1. At 10.8 mM 4-fluorophenol, the rate of 4-fluorocatechol formation decreased by 4.7-fold. However, the complete transformation of 1.3 g of 4-fluorophenol (10.8 mM) to 4-fluorocatechol was achieved within 7 h in a 1 L reaction volume. Similar to 4-fluorophenol, other 4-substituted halophenols were completely transformed to 4-halocatechols at 2 mM within a 1–2 h period. An increase in 4-halophenol concentration to 4.8 mM resulted in a 2.5–20-fold decrease in biotransformation efficiency depending on the substrate tested. Organic solvent extraction of the 4-halocatechol products followed by column chromatography resulted in the production of purified products with a final yield of between 33% and 38%.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0175-7598
1432-0614
DOI:10.1007/s00253-010-2969-5