Control of Large Salient-Pole Synchronous Machines Using Synchronous Optimal Pulsewidth Modulation
High-power grinding mills are used in the cement and mining industries to crush clinker or copper ore and grind these materials to fine powder. The multimegawatt speed-controlled mill drives operate at a very low angular speed. Synchronous motors with a high number of pole pairs are used as the prim...
Saved in:
Published in: | IEEE transactions on industrial electronics (1982) Vol. 62; no. 6; pp. 3372 - 3379 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-06-2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | High-power grinding mills are used in the cement and mining industries to crush clinker or copper ore and grind these materials to fine powder. The multimegawatt speed-controlled mill drives operate at a very low angular speed. Synchronous motors with a high number of pole pairs are used as the prime movers. They are traditionally fed by load-commutated thyristorized cycloconverters. These are prone to failure modes that can lead to excessive torque pulsations and high overcurrents. The huge stator, which was built as a separate ring-shaped structure around the tubular mill, may then get mechanically displaced, and the operation of the plant is interrupted. A novel and reliable direct drive uses a voltage source inverter that operates at the unity power factor for increased efficiency. Synchronous optimal pulsewidth modulation ensures a low harmonic current distortion and reduced switching losses at a very low switching frequency. The optimization of the pulse patterns takes the anisotropic magnetic properties of a separately excited synchronous motor into account. The implementation in a 23-MW semiautonomous grinding mill installed in a Zambian copper mine is intended. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2014.2378732 |