Distribution of Gutless Siboglinid Worms (Annelida, Siboglinidae) in Russian Arctic Seas in Relation to Gas Potential

In the Russian Arctic seas and adjacent areas of the Arctic basin, 120 sites of siboglinid records are currently known. Individuals belonging to 15 species have been collected. The largest number (49.2%) of records were made in the Barents Sea, followed by the Laptev Sea (37.5%) and the Arctic basin...

Full description

Saved in:
Bibliographic Details
Published in:Diversity (Basel) Vol. 14; no. 12; p. 1061
Main Authors: Karaseva, Nadezda P, Rimskaya-Korsakova, Nadezhda N, Smirnov, Roman V, Udalov, Alexey A, Mokievsky, Vadim O, Gantsevich, Mikhail M, Malakhov, Vladimir V
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-12-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the Russian Arctic seas and adjacent areas of the Arctic basin, 120 sites of siboglinid records are currently known. Individuals belonging to 15 species have been collected. The largest number (49.2%) of records were made in the Barents Sea, followed by the Laptev Sea (37.5%) and the Arctic basin (10 records; 8.3%). No siboglinids have been reported from the Chukchi Sea. The largest number of species has been identified in both the Laptev Sea and Arctic basin (seven species each). Seventy-eight percent of the records were discovered at water depths down to 400 m. Many of the siboglinid records in the Arctic seas of Russia are associated with areas of high hydrocarbon concentrations. In the Barents Sea, Nereilinum murmanicum has been collected near the largest gas fields. The records of Oligobrachia haakonmosbiensis, N. murmanicum, Siboglinum ekmani, Siboglinum hyperboreum, Siboglinum norvegicum, as well as two undetermined species of siboglinids are associated with the marginal areas of bottom gas hydrates where methane emissions can occur. The Arctic seas of Russia feature vast areas of permafrost rocks containing gas hydrates flooded by the sea. Under the influence of river runoff, gas hydrates dissociate, and methane emissions occur. Crispabrachia yenisey and Galathealinum karaense were found in the Yenisei estuary, and O. haakonmosbiensis was found in the Lena estuary.
ISSN:1424-2818
1424-2818
DOI:10.3390/d14121061