An in vitro model of early islet amyloid polypeptide (IAPP) fibrillogenesis using human IAPP-transgenic mouse islets

The mechanisms underlying insufficient insulin secretion and loss of β-cell mass in feline and human type 2 diabetes mellitus are incompletely understood. However, islet amyloid polypeptide (IAPP)-derived islet amyloidosis (IA) has been linked to increased rates of β-cell apoptosis and, therefore, o...

Full description

Saved in:
Bibliographic Details
Published in:Amyloid Vol. 13; no. 4; pp. 250 - 259
Main Authors: Henson, M. S., Buman, B. L., Jordan, K., Rahrmann, E. P., Hardy, R. M., Johnson, K. H., O'Brien, T. D.
Format: Journal Article
Language:English
Published: England Informa UK Ltd 01-12-2006
Taylor & Francis
Taylor & Francis Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mechanisms underlying insufficient insulin secretion and loss of β-cell mass in feline and human type 2 diabetes mellitus are incompletely understood. However, islet amyloid polypeptide (IAPP)-derived islet amyloidosis (IA) has been linked to increased rates of β-cell apoptosis and, therefore, our goal was to develop an in vitro model of IAPP fibrillogenesis using isolated pancreatic islets from mice transgenic for human IAPP (hIAPP Tg mice). Islets from hIAPP Tg mice, from mice transgenic for non-amyloidogenic murine IAPP (mIAPP Tg mice), and from the FVB background strain were exposed to normal (5.5 mM) or high (28 mM) glucose conditions in cell culture for 8 days. On days 0 and 8, islets were collected for electron microscopy (EM). EM showed no abnormalities in the mIAPP Tg or FVB islets at either time point. On day 8, hIAPP Tg islets cultured at high glucose concentration formed extracellular IAPP-derived flocculent deposits. No significant differences in rates of apoptosis were found between groups. Our findings, therefore, show that in vitro culture of hIAPP Tg mouse islets under high glucose conditions produces a readily available and rapidly inducible model of IAPP-derived fibrillogenesis and enables the study of early phases of the molecular pathogenesis of IA.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1350-6129
1744-2818
DOI:10.1080/13506120600960734