A global analysis of terrestrial plant litter dynamics in non-perennial waterways
Perennial rivers and streams make a disproportionate contribution to global carbon (C) cycling. However, the contribution of intermittent rivers and ephemeral streams (IRES), which sometimes cease to flow and can dry completely, is largely ignored although they represent over half the global river n...
Saved in:
Published in: | Nature geoscience Vol. 11; no. 7; pp. 497 - 503 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
01-07-2018
Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Perennial rivers and streams make a disproportionate contribution to global carbon (C) cycling. However, the contribution of intermittent rivers and ephemeral streams (IRES), which sometimes cease to flow and can dry completely, is largely ignored although they represent over half the global river network. Substantial amounts of terrestrial plant litter (TPL) accumulate in dry riverbeds and, upon rewetting, this material can undergo rapid microbial processing. We present the results of a global research collaboration that collected and analysed TPL from 212 dry riverbeds across major environmental gradients and climate zones. We assessed litter decomposability by quantifying the litter carbon-to-nitrogen ratio and oxygen (O
2
) consumption in standardized assays and estimated the potential short-term CO
2
emissions during rewetting events. Aridity, cover of riparian vegetation, channel width and dry-phase duration explained most variability in the quantity and decomposability of plant litter in IRES. Our estimates indicate that a single pulse of CO
2
emission upon litter rewetting contributes up to 10% of the daily CO
2
emission from perennial rivers and stream, particularly in temperate climates. This indicates that the contributions of IRES should be included in global C-cycling assessments.
Rewetting of plant litter accumulated in dry riverbeds releases pulses of CO
2
, reveals a global analysis of intermittent rivers and ephemeral streams. |
---|---|
ISSN: | 1752-0894 1752-0908 1752-0908 |
DOI: | 10.1038/s41561-018-0134-4 |