Impact of dietary fiber supplementation on modulating microbiota–host–metabolic axes in obesity
Low dietary fiber intake is associated with higher rates of microbiota-associated chronic diseases such as obesity. Low-fiber diets alter not only microbial composition but also the availability of metabolic end products derived from fermentation of fiber. Our objective was to examine the effects of...
Saved in:
Published in: | The Journal of nutritional biochemistry Vol. 64; pp. 228 - 236 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
01-02-2019
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Low dietary fiber intake is associated with higher rates of microbiota-associated chronic diseases such as obesity. Low-fiber diets alter not only microbial composition but also the availability of metabolic end products derived from fermentation of fiber. Our objective was to examine the effects of dietary fiber supplementation on gut microbiota and associated fecal and serum metabolites in relation to metabolic markers of obesity. We conducted a 12-week, single-center, double-blind, placebo-controlled trial with 53 adults with overweight or obesity. They were randomly assigned to a pea fiber (PF, 15 g/d in wafer form; n=29) or control (CO, isocaloric amount of wafers; n=24) group. Blood and fecal samples were collected at baseline and 12 weeks. Serum metabolomics, gut microbiota and fecal short-chain fatty acids (SCFAs) and bile acids (BAs) were examined. Within-group but not between-group analysis showed a significant effect of treatment on serum metabolites at 12 weeks compared to baseline. Fiber significantly altered fecal SCFAs and BAs with higher acetate and reduced isovalerate, cholate, deoxycholate and total BAs content in the PF group compared to baseline. Microbiota was differentially modulated in the two groups, including an increase in the SCFA producer Lachnospira in the PF group and decrease in the CO group. The change in body weight of participants showed a negative correlation with their change in Lachnospira (r=−0.463, P=.006) abundance. The current study provides insight into the actions of pea fiber and its impact on modulating microbiota–host–metabolic axes in obesity. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
ISSN: | 0955-2863 1873-4847 |
DOI: | 10.1016/j.jnutbio.2018.11.003 |