Graphene nanoribbons: A promising nanomaterial for biomedical applications

Graphene nanoribbons (GNRs) are narrow lengthened strips of single-layer graphene. Among the graphene family of nanomaterials, GNRs are remarkable materials due to their attractive physical, chemical, electrical, mechanical, thermal, and optical properties. They have an ultra-high surface area. Grap...

Full description

Saved in:
Bibliographic Details
Published in:Journal of controlled release Vol. 325; pp. 141 - 162
Main Authors: Johnson, Asha P., Gangadharappa, H.V., Pramod, K.
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 10-09-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Graphene nanoribbons (GNRs) are narrow lengthened strips of single-layer graphene. Among the graphene family of nanomaterials, GNRs are remarkable materials due to their attractive physical, chemical, electrical, mechanical, thermal, and optical properties. They have an ultra-high surface area. Graphene-oxide nanoribbons (GONRs), the oxygenated derivative of GNRs, offer more possibilities in the biomedicine due to their amphiphilic nature. Noncovalent and covalent modifications of these are possible for advanced biomedical applications. This review describes the properties, synthesis, surface modifications, and toxicities of GNRs, along with their biomedical applications. Their applications in drug delivery, anticancer therapy, sensing, antimicrobial therapy, imaging, gene therapy, photothermal therapy, management of spinal cord injury, bone regeneration, etc. are reviewed. [Display omitted]
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:0168-3659
1873-4995
DOI:10.1016/j.jconrel.2020.06.034