Riboflavin deficiency affects lipid metabolism partly by reducing apolipoprotein B100 synthesis in rats

Lipid metabolism is dependent on riboflavin status. Apolipoprotein B100 plays an important role in lipids transportation. This study was aimed to investigate the effect of riboflavin status on lipid metabolism and explore its association with apolipoprotein B100 synthesis in vivo. Riboflavin deficie...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of nutritional biochemistry Vol. 70; pp. 75 - 81
Main Authors: Bian, Xiangyu, Gao, Weina, Wang, Yawen, Yao, Zhanxin, Xu, Qingao, Guo, Changjiang, Li, Bailin
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01-08-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lipid metabolism is dependent on riboflavin status. Apolipoprotein B100 plays an important role in lipids transportation. This study was aimed to investigate the effect of riboflavin status on lipid metabolism and explore its association with apolipoprotein B100 synthesis in vivo. Riboflavin deficiency was developed in rats by feeding riboflavin-deficient diets. Compared to the control rats, the mRNA and protein expressions of apolipoprotein B100 were significantly reduced in riboflavin-deficient rats. Endoplasmic reticulum oxidoreductin 1 (ERO1) and protein disulfide isomerase (PDI), two enzymes involved in the oxidative folding of apolipoprotein B100, were also lowered remarkably in expression at protein level. Meanwhile, total cholesterol and triglyceride levels were decreased in the plasma and increased in the liver of riboflavin-deficient rats. The plasma very low-density lipoprotein cholesterol (VLDL-c) and low-density lipoprotein cholesterol (LDL-c) were also reduced in riboflavin-deficient rats. Our findings demonstrate that riboflavin deficiency affects lipid metabolism partly by reducing apolipoprotein B100 synthesis. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0955-2863
1873-4847
DOI:10.1016/j.jnutbio.2019.04.011