Design and analysis of helium Brayton power cycles for HiPER reactor

► A helium Brayton cycle has been designed integrating the two energy sources of HiPER. ► The Brayton cycle has intercooling stages and a recovery process. ► The low temperature of HiPER heat sources results in low cycle efficiency (35.2%). ► Two inter-cooling stages and a reheating process increase...

Full description

Saved in:
Bibliographic Details
Published in:Fusion engineering and design Vol. 88; no. 9-10; pp. 2679 - 2683
Main Authors: Sánchez, Consuelo, Juárez, Rafael, Sanz, Javier, Perlado, Manuel
Format: Journal Article
Language:English
Published: Elsevier B.V 01-10-2013
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:► A helium Brayton cycle has been designed integrating the two energy sources of HiPER. ► The Brayton cycle has intercooling stages and a recovery process. ► The low temperature of HiPER heat sources results in low cycle efficiency (35.2%). ► Two inter-cooling stages and a reheating process increases efficiency to over 37%. ► Helium Brayton cycles are to be considered as candidates for HiPER power cycles. Helium Brayton cycles have been studied as power cycles for both fission and fusion reactors obtaining high thermal efficiency. This paper studies several technological schemes of helium Brayton cycles applied for the HiPER reactor proposal. Since HiPER integrates technologies available at short term, its working conditions results in a very low maximum temperature of the energy sources, something that limits the thermal performance of the cycle. The aim of this work is to analyze the potential of the helium Brayton cycles as power cycles for HiPER. Several helium Brayton cycle configurations have been investigated with the purpose of raising the cycle thermal efficiency under the working conditions of HiPER. The effects of inter-cooling and reheating have specifically been studied. Sensitivity analyses of the key cycle parameters and component performances on the maximum thermal efficiency have also been carried out. The addition of several inter-cooling stages in a helium Brayton cycle has allowed obtaining a maximum thermal efficiency of over 36%, and the inclusion of a reheating process may also yield an added increase of nearly 1 percentage point to reach 37%. These results confirm that helium Brayton cycles are to be considered among the power cycle candidates for HiPER.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0920-3796
1873-7196
DOI:10.1016/j.fusengdes.2012.12.007