Effect of tilting on blood pressure and interstitial fluid pressures of bluefish and smooth dogfish [Pomatomus saltatrix, Mustelus canis]
Tolerance of the circulatory system of fish for gravitational stress has not been measured previously. We examined this in bluefish (Pomatomus saltatrix) and smooth dogfish (Mustelus canis) by placing them horizontally on a V-board in air while their gills were perfused with aerated seawater, then t...
Saved in:
Published in: | The American journal of physiology Vol. 242; no. 1; pp. R70 - R76 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
United States
01-01-1982
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Tolerance of the circulatory system of fish for gravitational stress has not been measured previously. We examined this in bluefish (Pomatomus saltatrix) and smooth dogfish (Mustelus canis) by placing them horizontally on a V-board in air while their gills were perfused with aerated seawater, then tilting them head up for 0.5 h, and finally returning them to horizontal. Meanwhile, we recorded the blood pressure, pulse pressure, and heart rate in the ventral aorta, and interstitial fluid pressure in the head and tail. All four bluefish tolerated a 30 degrees tilt or even a 60 degrees tilt with little change in blood pressure or interstitial pressure in the anterior and posterior regions. All recovered afterward. However, in the seven dogfish examined, the posterior interstitial fluid pressure increased from 2.8 +/- 1.0 cmH2O before tilting to 11.8 +/- 3.3 cmH2O toward the end of a 30 degrees tilt lasting 30 min. The blood pressure decreased as the pulse pressure approached zero, showing that circulatory insufficiency had developed due to insufficient venous return to the heart. Most of the dogfish died within a few hours after the experiment. These findings are in keeping with the conclusion that the vasculature of bluefish has more rigidity, less permeability, and perhaps more compensatory tone than that of smooth dogfish. We speculate that bluefish may have evolved their circulatory tolerance for gravity as a cross-adaptation to the stresses imposed on the circulation by forward acceleration and by regional differences of transcutaneous pressure occurring during fast carangiform swimming. |
---|---|
Bibliography: | M40 8211157 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-9513 2163-5773 |
DOI: | 10.1152/ajpregu.1982.242.1.R70 |