To split behaviour into bouts, log-transform the intervals

Analysis of behaviour that is displayed in bouts depends crucially on quantitative estimates of bout criteria, that is, the lengths of the shortest intervals between bouts. Current methods estimate bout criteria by modelling the log-transformed (cumulative) frequency distributions of intervals betwe...

Full description

Saved in:
Bibliographic Details
Published in:Animal behaviour Vol. 57; no. 4; pp. 807 - 817
Main Authors: TOLKAMP, BERT J., KYRIAZAKIS, ILIAS
Format: Journal Article
Language:English
Published: Kent Elsevier Ltd 01-04-1999
Elsevier
Harcourt Brace Jovanovich Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Analysis of behaviour that is displayed in bouts depends crucially on quantitative estimates of bout criteria, that is, the lengths of the shortest intervals between bouts. Current methods estimate bout criteria by modelling the log-transformed (cumulative) frequency distributions of intervals between events. For analysis of feeding behaviour, these models will not result in biologically meaningful quantitative estimates (Tolkamp et al.1998,Journal of Theoretical Biology194, 235–250). We proposed a method that models the frequency distribution of log-transformed interval lengths instead. Applying this method to a single data set showed that the log-transformed lengths of intervals between feeding events were distributed as two Gaussians. Here we test this model using a data set of 35171 intervals between feeding that was obtained during an experiment with 38 cows in three dietary treatment groups. No meaningful bout criterion could be obtained for some individuals, which casts doubt on the general validity of the proposed model. Addition of a third log-normal improved the fit of the model and we hypothesized that this third population represents intervals including drinking. In a second experiment, we found the measurements to be consistent with this hypothesis. We obtained meaningful meal criteria for all individuals by fitting either a double, or a triple, log-normal model to the frequency distributions of the lengths of intervals between feeding. These log-normal models appear to be not only more biologically meaningful than log (cumulative) frequency models but also far more flexible.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0003-3472
1095-8282
DOI:10.1006/anbe.1998.1022