Bio-transformation of Glycerol to 3-Hydroxypropionic Acid Using Resting Cells of Lactobacillus reuteri
Lactobacillus reuteri grown in MRS broth containing 20 mM glycerol exhibits 3.7-fold up-regulation of 3-hydroxypropionic acid (3-HP) pathway genes during the stationary phase. Concomitantly, the resting cells prepared from stationary phase show enhancement in bio-conversion of glycerol, and the maxi...
Saved in:
Published in: | Current microbiology Vol. 71; no. 4; pp. 517 - 523 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer US
01-10-2015
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lactobacillus reuteri grown in MRS broth containing 20 mM glycerol exhibits 3.7-fold up-regulation of 3-hydroxypropionic acid (3-HP) pathway genes during the stationary phase. Concomitantly, the resting cells prepared from stationary phase show enhancement in bio-conversion of glycerol, and the maximum specific productivity (q ₚ) is found to be 0.17 g 3-HP per g CDW per hour. The regulatory elements such as catabolite repression site in the up-stream of 3-HP pathway genes are presumed for the augmentation of glycerol bio-conversion selectively in stationary phase. However, in the repression mutant, the maximum q ₚ of 3-HP persisted in the stationary phase-derived resting cells indicating the role of further regulatory features. In the production stage, the external 3-HP concentration of 35 mM inhibits 3-HP synthesis. In addition, it has also moderated 1,3-propanediol formation, as it is a redox bio-catalysis involving NAD⁺/NADH ratio of 6.5. Repeated batch bio-transformation has been used to overcome product inhibition, and the total yield (Ypx) of 3-HP from the stationary phase-derived biomass is 3.3 times higher than that from the non-repeated mode. With the use of appropriate gene expression condition and repeated transfer of biomass, 3-HP produced in this study can be used for low-volume, high-value applications. |
---|---|
Bibliography: | http://dx.doi.org/10.1007/s00284-015-0878-7 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0343-8651 1432-0991 |
DOI: | 10.1007/s00284-015-0878-7 |