A mutation in β-amyloid precursor protein renders SH-SY5Y cells vulnerable to isoflurane toxicity: The role of inositol 1,4,5-trisphosphate receptors

Isoflurane is a commonly used inhaled anesthetic, which induces apoptosis of SH-SY5Y cells in a dose- and time-dependent manner; however, the underlying mechanisms remain unknown. The authors of the present study hypothesized that a mutation in β-amyloid precursor protein (APP), which is a gene asso...

Full description

Saved in:
Bibliographic Details
Published in:Molecular medicine reports Vol. 14; no. 6; pp. 5435 - 5442
Main Authors: Liu, Xiang, Song, Shan, Wang, Qiujun, Yuan, Tianbao, He, Jihua
Format: Journal Article
Language:English
Published: Greece D.A. Spandidos 01-12-2016
Spandidos Publications
Spandidos Publications UK Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Isoflurane is a commonly used inhaled anesthetic, which induces apoptosis of SH-SY5Y cells in a dose- and time-dependent manner; however, the underlying mechanisms remain unknown. The authors of the present study hypothesized that a mutation in β-amyloid precursor protein (APP), which is a gene associated with familial Alzheimer's disease, may render cells vulnerable to isoflurane-induced cytotoxicity via activation of inositol 1,4,5-trisphosphate receptors (IP3R). In the present study, SH-SY5Y cells were transfected with a vector or with mutated APP, and were treated with the equivalent of 1 minimum alveolar concentration (MAC) isoflurane for 8 h. Cell apoptosis rate, alterations to cytosolic calcium concentrations ([Ca2+]c), and protein levels of IP3R were determined following exposure of cells to isoflurane. In addition, the effects of the IP3R antagonist xestospongin C were determined on isoflurane-induced cytotoxicity and calcium release from the endoplasmic reticulum (ER) of mutated APP- and vector-transfected SH-SY5Y cells. Treatment with isoflurane (1 MAC) for 8 h induced a higher degree of cytotoxicity, and a marked increase in [Ca2+]c and IP3R protein levels in mutated APP-transfected SH-SY5Y cells compared with vector-transfected SH-SY5Y cells. Xestospongin C significantly attenuated isoflurane-mediated cytotoxicity and inhibited calcium release from the ER of SH-SY5Y cells. These results indicated that the APP mutation may render SH-SY5Y cells vulnerable to isoflurane neurotoxicity, and the underlying mechanism may be associated with Ca2+ dysregulation via overactivation of IP3R.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1791-2997
1791-3004
DOI:10.3892/mmr.2016.5930