Optimized Projections for Compressed Sensing
Compressed sensing (CS) offers a joint compression and sensing processes, based on the existence of a sparse representation of the treated signal and a set of projected measurements. Work on CS thus far typically assumes that the projections are drawn at random. In this paper, we consider the optimi...
Saved in:
Published in: | IEEE transactions on signal processing Vol. 55; no. 12; pp. 5695 - 5702 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
New York, NY
IEEE
01-12-2007
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Compressed sensing (CS) offers a joint compression and sensing processes, based on the existence of a sparse representation of the treated signal and a set of projected measurements. Work on CS thus far typically assumes that the projections are drawn at random. In this paper, we consider the optimization of these projections. Since such a direct optimization is prohibitive, we target an average measure of the mutual coherence of the effective dictionary, and demonstrate that this leads to better CS reconstruction performance. Both the basis pursuit (BP) and the orthogonal matching pursuit (OMP) are shown to benefit from the newly designed projections, with a reduction of the error rate by a factor of 10 and beyond. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2007.900760 |