Bioaugmentation Strategies for Enhancing Methane Production from Shrimp Processing Waste through Anaerobic Digestion
Bioaugmentation strategies were tested to improve energetic valorization of shrimp processing waste (SPW) by anaerobic digestion (AD). A fermenting bacteria pool (F210) obtained from coastal lake sediments and two strains of anaerobic fungi (AF), Orpynomyces sp. and Neocallimastix sp., commonly foun...
Saved in:
Published in: | Fermentation (Basel) Vol. 9; no. 4; p. 401 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-04-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bioaugmentation strategies were tested to improve energetic valorization of shrimp processing waste (SPW) by anaerobic digestion (AD). A fermenting bacteria pool (F210) obtained from coastal lake sediments and two strains of anaerobic fungi (AF), Orpynomyces sp. and Neocallimastix sp., commonly found as components of microbial community of AD plants, were used with the aim of improving the fermentative and hydrolytic phases of AD, respectively. The experiment was carried out by testing single bioaugmentation at an SPW concentration of 6.5 gVS L−1 and combined bioaugmentation at three SPW concentrations (6.5, 9.7 and 13.0 gVS L−1, respectively), in batch mode and mesophilic conditions. Cumulative CH4 productions were higher in the combined bioaugmentation tests and increased in line with SPW concentration. The F210 played a key role in enhancing CH4 production while no effect was attributable to the addition of AFs. The CH4 content (%) in the biogas increased with substrate concentrations, with average values of 67, 70, and 73%, respectively. Microbial community abundance increased in line with the SPW concentration and the acetoclastic Methanosarcina predominated within the methanogen Archaea guild in the combined bioaugmentation test (in all cases > 65%). |
---|---|
ISSN: | 2311-5637 2311-5637 |
DOI: | 10.3390/fermentation9040401 |