Three-dimensional prepolarized magnetic resonance imaging using rapid acquisition with relaxation enhancement
Prepolarized MRI (PMRI) with pulsed electromagnets has the potential to produce diagnostic quality 0.5‐ to 1.0‐T images with significantly reduced cost, susceptibility artifacts, specific absorption rate, and gradient noise. In PMRI, the main magnetic field cycles between a high field (Bp) to polari...
Saved in:
Published in: | Magnetic resonance in medicine Vol. 56; no. 5; pp. 1085 - 1095 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01-11-2006
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Prepolarized MRI (PMRI) with pulsed electromagnets has the potential to produce diagnostic quality 0.5‐ to 1.0‐T images with significantly reduced cost, susceptibility artifacts, specific absorption rate, and gradient noise. In PMRI, the main magnetic field cycles between a high field (Bp) to polarize the sample and a homogeneous, low field (B0) for data acquisition. This architecture combines the higher SNR of the polarizing field with the imaging benefits of the lower field. However, PMRI can only achieve high SNR efficiency for volumetric imaging with 3D rapid imaging techniques, such as rapid acquisition with relaxation enhancement (RARE) (FSE, TSE), because slice‐interleaved acquisition and longitudinal magnetization storage are both inefficient in PMRI. This paper demonstrates the use of three techniques necessary to achieve efficient, artifact‐free RARE in PMRI: quadratic nulling of concomitant gradient fields, electromotive force cancelation during field ramping, and phase compensation of CPMG echo trains. This paper also demonstrates the use of 3D RARE in PMRI to achieve standard T1 and fat‐suppressed T2 contrast in phantoms and in vivo wrists. These images show strong potential for future clinical application of PMRI to extremity musculoskeletal imaging and peripheral angiography. Magn Reason Med, 2006. © 2006 Wiley‐Liss.Inc. |
---|---|
Bibliography: | istex:BFA09F898553021DEF5B4B9F04DCD4ABAE91D84B ark:/67375/WNG-R492F7F6-G ArticleID:MRM21065 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0740-3194 1522-2594 |
DOI: | 10.1002/mrm.21065 |