Co-design of an event-triggered dynamic output feedback controller for discrete-time LPV systems with constraints
This paper investigates an event-triggered control design approach for discrete-time linear parameter-varying (LPV) systems under control constraints. The proposed conditions can simultaneously design a parameter-dependent dynamic output feedback controller and an event generator, ensuring the close...
Saved in:
Published in: | Journal of the Franklin Institute Vol. 359; no. 2; pp. 697 - 718 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elmsford
Elsevier Ltd
01-01-2022
Elsevier Science Ltd Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper investigates an event-triggered control design approach for discrete-time linear parameter-varying (LPV) systems under control constraints. The proposed conditions can simultaneously design a parameter-dependent dynamic output feedback controller and an event generator, ensuring the closed-loop system’s regional asymptotic stability. Based on the Lyapunov stability theory, these conditions are given in terms of linear matrix inequalities (LMIs). Moreover, using some proposed optimization procedures, it is possible to minimize the number of sensor transmissions, maximize the estimation of the region of attraction of the origin, and incorporate optimal control criteria into the formulation. Through numerical examples, some comparisons with other approaches in the literature evidence the proposed technique’s efficacy. |
---|---|
ISSN: | 0016-0032 1879-2693 0016-0032 |
DOI: | 10.1016/j.jfranklin.2021.04.028 |