Mitigating effect of ferulic acid on di-(2-ethylhexyl) phthalate-induced neurocognitive dysfunction in male rats with a comprehensive in silico survey

Di-(2-ethylhexyl) phthalate (DEHP) is the most abundant phthalate threatening public health-induced neurotoxicity. This neurotoxicity is associated with behavioral and biochemical deficits in male rats. Our study investigated the neuroprotective effect of ferulic acid (FA) on male rats exposed to DE...

Full description

Saved in:
Bibliographic Details
Published in:Naunyn-Schmiedeberg's archives of pharmacology Vol. 397; no. 5; pp. 3493 - 3512
Main Authors: Khalifa, Mhasen, Fayed, Rabie H., Ahmed, Yasmine H., Sedik, Ahmed A., El-Dydamony, Nehad M., Khalil, Heba M. A.
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01-05-2024
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Di-(2-ethylhexyl) phthalate (DEHP) is the most abundant phthalate threatening public health-induced neurotoxicity. This neurotoxicity is associated with behavioral and biochemical deficits in male rats. Our study investigated the neuroprotective effect of ferulic acid (FA) on male rats exposed to DEHP. Thirty-two male Wistar rats were assigned to four groups. Group I control rats received corn oil, group II intoxicated rats received 300 mg/kg of DEHP, group III received 300 mg/kg of DEHP + 50 mg/kg of FA, and group IV received 50 mg/kg of FA, all agents administrated daily per os for 30 days. Anxiety-like behavior, spatial working memory, and recognition memory were assessed. Also, brain oxidative stress biomarkers, including brain malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), superoxide dismutase (SOD), brain-derived neurotrophic factor (BDNF) as well as heme oxygenase-1 (HO-1) were measured. Moreover, brain histopathology examinations associated with immunohistochemistry determination of brain caspase-3 were also evaluated. Furthermore, docking simulation was adapted to understand the inhibitory role of FA on caspase-3 and NO synthase. Compared to DEHP-intoxicated rats, FA-treated rats displayed improved cognitive memory associated with a reduced anxious state. Also, the redox state was maintained with increased BNDF levels. These changes were confirmed by restoring the normal architecture of brain tissue and a decrement in the immunohistochemistry caspase-3. In conclusion, FA has potent antioxidant and antiapoptotic properties that confirm the neuroprotective activity of FA, with a possible prospect for its therapeutic capabilities and nutritional supplement value.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0028-1298
1432-1912
1432-1912
DOI:10.1007/s00210-023-02831-9