Instruction-based system-level power evaluation of system-on-a-chip peripheral cores

Various core-based power evaluation approaches for microprocessors, caches, memories and buses have been proposed in the past. We propose a new power evaluation technique that is targeted toward peripheral cores. Our approach is the first to combine for peripherals both gate-level-obtained power dat...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on very large scale integration (VLSI) systems Vol. 10; no. 6; pp. 856 - 863
Main Authors: Givargis, T., Vahid, F., Henkel, J.
Format: Journal Article
Language:English
Published: Piscataway, NJ IEEE 01-12-2002
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Various core-based power evaluation approaches for microprocessors, caches, memories and buses have been proposed in the past. We propose a new power evaluation technique that is targeted toward peripheral cores. Our approach is the first to combine for peripherals both gate-level-obtained power data with a system-level simulation model written in an object-oriented language. Our approach decomposes peripheral functionality into so-called instructions. The approach can be applied with three increasingly fast methods: system simulation, trace simulation or trace analysis. We show that our models are sufficiently accurate in order to make power-related system-level design decisions but at a computation time that is orders of magnitude faster than a gate-level simulation.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1063-8210
1557-9999
DOI:10.1109/TVLSI.2002.808443