Exploring Nanomechanical Behavior of Silicon Nanowires: AFM Bending Versus Nanoindentation

Despite many efforts to advance the understanding of nanowire mechanics, a precise characterization of the mechanical behavior and properties of nanowires is still far from standardization. The primary objective of this work is to suggest the most appropriate testing method for accurately determinin...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials Vol. 21; no. 2; pp. 279 - 286
Main Authors: Kim, Yong-Jae, Son, Kwangsoo, Choi, In-Chul, Choi, In-Suk, Park, Won Il, Jang, Jae-il
Format: Journal Article
Language:English
Published: New York WILEY-VCH Verlag 21-01-2011
WILEY‐VCH Verlag
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Despite many efforts to advance the understanding of nanowire mechanics, a precise characterization of the mechanical behavior and properties of nanowires is still far from standardization. The primary objective of this work is to suggest the most appropriate testing method for accurately determining the mechanical performance of silicon nanowires. To accomplish this goal, the mechanical properties of silicon nanowires with a radius between 15 and 70 nm (this may be the widest range ever reported in this research field) are systematically explored by performing the two most popular nanomechanical tests, atomic force microscopy (AFM) bending and nanoindentation, on the basis of different analytical models and testing conditions. A variety of nanomechanical experiments lead to the suggestion that AFM bending based on the line tension model is the most appropriate and reliable testing method for mechanical characterization of silicon nanowires. This recommendation is also guided by systematic investigations of the testing environments through finite element simulations. Results are then discussed in terms of the size‐dependency of the mechanical properties; in the examined range of nanowire radius, the elastic modulus is about 185 GPa without showing significant size dependency, whereas the nanowire strength dramatically increases from 2 to 10 GPa as the radius is reduced. Nanomechanical tests are performed on silicon nanowires with radii between 15 and 70 nm based on different analytical models and testing conditions in order to suggest the most appropriate method for determining mechanical performance of nanowires. The investigations also extensively explore size‐dependent mechanical properties.
Bibliography:ArticleID:ADFM201001471
istex:D3368B1709AAF97EDDB1081637317453FED26FC4
ark:/67375/WNG-BJ1SZ8S3-Q
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1616-301X
1616-3028
1616-3028
DOI:10.1002/adfm.201001471