Epidermal growth factor-induced cell proliferation in the adult rat striatum

Current strategies for repairing the adult CNS following injury include cell transplantation and/or the use of viral vectors to deliver therapeutic agents. Although promising, both techniques are limited in their usefulness due to the immunological response triggered in the brain as a result of the...

Full description

Saved in:
Bibliographic Details
Published in:Brain research Vol. 1007; no. 1; pp. 29 - 38
Main Authors: McGinn, Melissa J., Sun, Dong, Schneider, Stacie L., Alexander, John K., Colello, Raymond J.
Format: Journal Article
Language:English
Published: London Elsevier B.V 08-05-2004
Amsterdam Elsevier
New York, NY
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Current strategies for repairing the adult CNS following injury include cell transplantation and/or the use of viral vectors to deliver therapeutic agents. Although promising, both techniques are limited in their usefulness due to the immunological response triggered in the brain as a result of the introduction of foreign antigens. An alternative method to repair the damaged CNS is to stimulate endogenous cells within the brain to divide thereby replacing cells lost to injury. Since it has been shown that growth factors such as epidermal growth factor (EGF) are potent mitogens to CNS cells in vitro, we sought to assess the mitogenic effect of an in vivo application of EGF to the adult mammalian brain. Accordingly, varying doses of human recombinant EGF were administered to the striatum of adult rats, followed 48 h later by intraperitoneal injections of 5-bromodeoxyuridine (BrdU), a marker for cell proliferation. Of four doses assessed, 0.05 ng of EGF induced the highest levels of cell proliferation. To determine the cellular identity of these proliferating cells, animals were injected with 3H-thymidine 48 h following EGF administration to label dividing cells. Sections were subsequently immunostained for markers to astrocytes, microglia, oligodendrocytes, neural precursors, and mature neurons. Compared to controls, a significant proportion of the newly generated cells resulting from EGF administration were identified as immature and mature astrocytes. Collectively, these results provide valuable information for utilizing a growth factor administration approach to mobilize the proliferative response of endogenous cells to replace those lost to injury or disease.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0006-8993
1872-6240
DOI:10.1016/j.brainres.2003.12.054