A Study on LQG/LTR Control for Damping Inter-Area Oscillations in Power Systems
This brief presents results on a robust linear quadratic Gaussian (LQG) damping control scheme for improving the inter-area mode oscillations of power systems. A technique is also proposed to guarantee minimum-phase/well-damped transmission zeros by appropriately "squaring" the design plan...
Saved in:
Published in: | IEEE transactions on control systems technology Vol. 15; no. 1; pp. 151 - 160 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York, NY
IEEE
01-01-2007
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This brief presents results on a robust linear quadratic Gaussian (LQG) damping control scheme for improving the inter-area mode oscillations of power systems. A technique is also proposed to guarantee minimum-phase/well-damped transmission zeros by appropriately "squaring" the design plant, for the purposes of efficient robust recovery. A 7th-order multiple-input single-output (MISO) centralized controller is designed for a 16-machine, 5-area power system (138th order) reinforced with a thyristor-controlled series capacitor (TCSC) to improve the damping of the critical inter-area modes by employing appropriate global signal measurements. Loop transfer recovery (LTR) is then applied to reinforce controller robustness in the case of faults and unknown disturbances. The performance of the designed system is assessed in the frequency domain and via appropriate time-domain simulations based upon the nonlinear model under a variety of scenaria |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1063-6536 1558-0865 |
DOI: | 10.1109/TCST.2006.883232 |