Electricity production with living plants on a green roof: environmental performance of the plant-microbial fuel cell

Several renewable and (claimed) sustainable energy sources have been introduced into the market during the last century in an attempt to battle pollution from fossil fuels. Especially biomass energy technologies have been under debate for their sustainability. A new biomass energy technology was int...

Full description

Saved in:
Bibliographic Details
Published in:Biofuels, bioproducts and biorefining Vol. 7; no. 1; pp. 52 - 64
Main Authors: Helder, Marjolein, Chen, Wei-Shan, van der Harst, Eugenie J.M., Strik, David P.B.T.B.
Format: Journal Article
Language:English
Published: Chichester, UK John Wiley & Sons, Ltd 01-01-2013
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Several renewable and (claimed) sustainable energy sources have been introduced into the market during the last century in an attempt to battle pollution from fossil fuels. Especially biomass energy technologies have been under debate for their sustainability. A new biomass energy technology was introduced in 2008: the plant‐microbial fuel cell (P‐MFC). In this system, electricity can be generated with living plants and thus bioelectricity and biomass production can be combined on the same surface. A green roof producing electricity with a P‐MFC could be an interesting combination. P‐MFC technology is nearing implementation in the market and therefore we assessed the environmental performance of the system with an early stage life cycle assessment (LCA). The environmental performance of the P‐MFC is currently worse than that of conventional electricity production technologies. This is mainly due to the limited power output of the P‐MFC and the materials presently used in the P‐MFC. Granular activated carbon (anode material), gold wires (current collectors), and Teflon‐coated copper wires (connecting anode and cathode) have the largest impact on environmental performance. Use of these materials needs to be reduced or avoided and alternatives need to be sought. Increasing power output and deriving co‐products from the P‐MFC will increase environmental performance of the P‐MFC. At this stage it is too early to compare the P‐MFC with other (renewable) energy technologies since the P‐MFC is still under development. © 2013 Society of Chemical Industry and John Wiley & Sons, Ltd
AbstractList Several renewable and (claimed) sustainable energy sources have been introduced into the market during the last century in an attempt to battle pollution from fossil fuels. Especially biomass energy technologies have been under debate for their sustainability. A new biomass energy technology was introduced in 2008: the plant-microbial fuel cell (P-MFC). In this system, electricity can be generated with living plants and thus bioelectricity and biomass production can be combined on the same surface. A green roof producing electricity with a P-MFC could be an interesting combination. P-MFC technology is nearing implementation in the market and therefore we assessed the environmental performance of the system with an early stage life cycle assessment (LCA). The environmental performance of the P-MFC is currently worse than that of conventional electricity production technologies. This is mainly due to the limited power output of the P-MFC and the materials presently used in the P-MFC. Granular activated carbon (anode material), gold wires (current collectors), and Teflon-coated copper wires (connecting anode and cathode) have the largest impact on environmental performance. Use of these materials needs to be reduced or avoided and alternatives need to be sought. Increasing power output and deriving co-products from the P-MFC will increase environmental performance of the P-MFC. At this stage it is too early to compare the P-MFC with other (renewable) energy technologies since the P-MFC is still under development.
Several renewable and (claimed) sustainable energy sources have been introduced into the market during the last century in an attempt to battle pollution from fossil fuels. Especially biomass energy technologies have been under debate for their sustainability. A new biomass energy technology was introduced in 2008: the plant‐microbial fuel cell (P‐MFC). In this system, electricity can be generated with living plants and thus bioelectricity and biomass production can be combined on the same surface. A green roof producing electricity with a P‐MFC could be an interesting combination. P‐MFC technology is nearing implementation in the market and therefore we assessed the environmental performance of the system with an early stage life cycle assessment (LCA). The environmental performance of the P‐MFC is currently worse than that of conventional electricity production technologies. This is mainly due to the limited power output of the P‐MFC and the materials presently used in the P‐MFC. Granular activated carbon (anode material), gold wires (current collectors), and Teflon‐coated copper wires (connecting anode and cathode) have the largest impact on environmental performance. Use of these materials needs to be reduced or avoided and alternatives need to be sought. Increasing power output and deriving co‐products from the P‐MFC will increase environmental performance of the P‐MFC. At this stage it is too early to compare the P‐MFC with other (renewable) energy technologies since the P‐MFC is still under development. © 2013 Society of Chemical Industry and John Wiley & Sons, Ltd
Several renewable and (claimed) sustainable energy sources have been introduced into the market the during the last centuries in an attempt to battle pollution from fossil fuels. Especially biomass energy technologies have been under debate for their sustainability. A new biomass energy technology was introduced in 2008: the Plant-Microbial Fuel Cell (PMFC). In this system electricity can be generated with living plants and thus bioelectricity and biomass production can be combined on the same surface. A green roof producing electricity with a P-MFC could be an interesting combination. P-MFC technology is nearing implementation in the market and therefore we assessed the environmental performance of the system with an early stage Life Cycle Assessment (LCA). The environmental performance of the P-MFC is currently worse than of conventional electricity production technologies. This is mainly due to the limited power output of the P-MFC and the materials presently used in the P-MFC. Granular activated carbon (anode material), goldwires (current collectors) and Teflon coated copper wires (connecting anode and cathode) have the largest impact on the environmental performance. Use of these materials needs to be reduced or avoided and alternatives need to be sought. Increasing power output and deriving co-products from the P-MFC will increase environmental performance of the P-MFC. At this stage it is too early to compare the PMFC with other (renewable) energy technologies since the P-MFC is still under development.
Several renewable and (claimed) sustainable energy sources have been introduced into the market during the last century in an attempt to battle pollution from fossil fuels. Especially biomass energy technologies have been under debate for their sustainability. A new biomass energy technology was introduced in 2008: the plant‐microbial fuel cell (P‐ MFC ). In this system, electricity can be generated with living plants and thus bioelectricity and biomass production can be combined on the same surface. A green roof producing electricity with a P‐ MFC could be an interesting combination. P‐ MFC technology is nearing implementation in the market and therefore we assessed the environmental performance of the system with an early stage life cycle assessment ( LCA ). The environmental performance of the P‐ MFC is currently worse than that of conventional electricity production technologies. This is mainly due to the limited power output of the P‐ MFC and the materials presently used in the P‐ MFC . Granular activated carbon (anode material), gold wires (current collectors), and Teflon‐coated copper wires (connecting anode and cathode) have the largest impact on environmental performance. Use of these materials needs to be reduced or avoided and alternatives need to be sought. Increasing power output and deriving co‐products from the P‐ MFC will increase environmental performance of the P‐ MFC . At this stage it is too early to compare the P‐ MFC with other (renewable) energy technologies since the P‐ MFC is still under development. © 2013 Society of Chemical Industry and John Wiley & Sons, Ltd
Author Strik, David P.B.T.B.
van der Harst, Eugenie J.M.
Helder, Marjolein
Chen, Wei-Shan
Author_xml – sequence: 1
  givenname: Marjolein
  surname: Helder
  fullname: Helder, Marjolein
  organization: Wageningen University, Wageningen, the Netherlands
– sequence: 2
  givenname: Wei-Shan
  surname: Chen
  fullname: Chen, Wei-Shan
  organization: Wageningen University, Wageningen, the Netherlands
– sequence: 3
  givenname: Eugenie J.M.
  surname: van der Harst
  fullname: van der Harst, Eugenie J.M.
  organization: Wageningen University, Wageningen, the Netherlands
– sequence: 4
  givenname: David P.B.T.B.
  surname: Strik
  fullname: Strik, David P.B.T.B.
  email: Correspondence to: D. Strik, Sub-department Environmental Technology, Wageningen University, Wageningen, the Netherlands. , david.strik@wur.nl
  organization: Wageningen University, Wageningen, the Netherlands
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-166220$$DView record from Swedish Publication Index
BookMark eNp1kUFP3DAQhaOKSgVaqT_Bx15C7ThxEm4sUECg9rJtuVm2M951cezUdkj33zfRokU99DSj0fdG8-adZEfOO8iyjwSfEYyLz1LKM0Jr-iY7Ji0tcoIpOTr05eO77CTGXxhXrCqr42y8tqBSMMqkHRqC70aVjHdoMmmLrHk2boMGK1yKaJ4KtAkADgXv9TkC92yCdz24JCwaIGgfeuEUIK9R2sJemPdGBS_NjOgRLFJg7fvsrRY2woeXepp9_3K9vrzNH77d3F1ePOSqLCqas65RjaCdoKppmZY17cqmrYSWDdNCY0wlY10LtcadaGndUQWEgi5kVZQAHT3Nzvd7J7EBN3sBx50IykTuheHWyCDCjk9j4M4uZRhl5CWlrG1ncb4XxwnmOR-C6Rd6UV6ZHxfchw1_SltOGCsKPPOf9vz8xt8jxMR7Exe3woEfIyeUNKwtGly_ovNnYgygD8sJ5kuMfI6RLzG-XjEZC7v_cny1Wv3Lm5jgz4EX4YmzmtYV__n1ht-35PH-dr3mV_Qv9pazzw
CitedBy_id crossref_primary_10_3390_w11091810
crossref_primary_10_1016_j_apenergy_2016_10_122
crossref_primary_10_1016_j_apenergy_2020_115788
crossref_primary_10_1016_j_seta_2021_101570
crossref_primary_10_1080_17597269_2023_2212987
crossref_primary_10_1016_j_ecoleng_2017_08_017
crossref_primary_10_1016_j_rser_2021_111697
crossref_primary_10_1016_j_biombioe_2022_106629
crossref_primary_10_3390_app11052220
crossref_primary_10_1016_j_scitotenv_2020_142786
crossref_primary_10_1016_j_rser_2017_03_064
crossref_primary_10_1080_17597269_2018_1432272
crossref_primary_10_1016_j_renene_2023_119532
crossref_primary_10_1016_j_scitotenv_2014_05_020
crossref_primary_10_1016_j_biombioe_2015_11_006
crossref_primary_10_1016_j_biombioe_2024_107053
crossref_primary_10_1016_j_rser_2019_05_016
crossref_primary_10_1016_j_rser_2024_114670
crossref_primary_10_3389_fbioe_2024_1276176
crossref_primary_10_1016_j_adapen_2021_100058
crossref_primary_10_1016_j_scitotenv_2023_162757
crossref_primary_10_1007_s13762_020_02934_3
crossref_primary_10_1016_j_rser_2022_112953
crossref_primary_10_1088_1755_1315_633_1_012006
crossref_primary_10_1134_S1063784221030142
crossref_primary_10_1016_j_mset_2019_08_003
crossref_primary_10_1016_j_apenergy_2014_10_006
crossref_primary_10_1016_j_psep_2024_04_066
crossref_primary_10_1063_1_5032190
crossref_primary_10_1021_acs_est_5b06376
crossref_primary_10_1021_acssuschemeng_0c08453
Cites_doi 10.1016/j.renene.2005.03.002
10.1016/j.biortech.2009.12.124
10.1021/es901539x
10.1007/s00253-008-1410-9
10.1002/er.1397
10.1007/s11368-012-0537-6
10.1016/j.ijhydene.2009.03.004
10.1016/S0360-3199(00)00053-7
10.1073/pnas.0604600103
10.1016/j.rser.2010.10.005
10.1016/j.biombioe.2012.10.011
10.1016/S1385-8947(99)00042-X
10.1016/j.tibtech.2010.10.001
10.1007/BF00011685
10.1002/cssc.201100732
10.1126/science.1152747
10.1021/es071938w
10.1186/1754-6834-5-70
10.1039/b401871k
10.1016/S0378-7788(01)00062-7
10.1007/s00253-010-2440-7
10.1021/es100125h
10.1016/j.biortech.2011.11.005
ContentType Journal Article
Copyright Copyright © 2013 Society of Chemical Industry and John Wiley & Sons, Ltd
Wageningen University & Research
Copyright_xml – notice: Copyright © 2013 Society of Chemical Industry and John Wiley & Sons, Ltd
– notice: Wageningen University & Research
DBID BSCLL
AAYXX
CITATION
7SU
7TB
8FD
C1K
FR3
H8D
KR7
L7M
ADTPV
AOWAS
D8V
QVL
DOI 10.1002/bbb.1373
DatabaseName Istex
CrossRef
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
NARCIS:Publications
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database


CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1932-1031
EndPage 64
ExternalDocumentID oai_library_wur_nl_wurpubs_433699
oai_DiVA_org_kth_166220
10_1002_bbb_1373
BBB1373
ark_67375_WNG_K91XKHTT_D
Genre article
GroupedDBID 05W
0R~
1OC
23N
31~
33P
3SF
4.4
52U
52V
5DZ
5GY
66C
8-1
8UM
A00
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
CS3
DCZOG
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
L8X
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
MY~
O9-
OIG
P2P
P2W
P4E
ROL
SUPJJ
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAMNL
AAYXX
CITATION
7SU
7TB
8FD
C1K
FR3
H8D
KR7
L7M
ADTPV
AOWAS
D8V
0R
31
AAPBV
AAVGM
ABHUG
ABWRO
ACXME
ADAWD
ADDAD
AEUQT
AGJLS
HZ
MY
QVL
RIG
S-
UNR
ID FETCH-LOGICAL-c4253-6d8c8a3da3c896fb73d4895afb86faf003b66d9e7f0da937d3ce13ef2b524eed3
IEDL.DBID 5DZ
ISSN 1932-104X
1932-1031
IngestDate Tue Jan 05 18:05:58 EST 2021
Sat Aug 24 00:07:00 EDT 2024
Fri Aug 16 06:11:14 EDT 2024
Thu Nov 21 23:59:21 EST 2024
Sat Aug 24 00:58:32 EDT 2024
Wed Oct 30 09:57:44 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4253-6d8c8a3da3c896fb73d4895afb86faf003b66d9e7f0da937d3ce13ef2b524eed3
Notes istex:0A0105308AC57EC6F7AA26578C39F8278EC655EA
ark:/67375/WNG-K91XKHTT-D
ArticleID:BBB1373
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1318692807
PQPubID 23500
PageCount 13
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_433699
swepub_primary_oai_DiVA_org_kth_166220
proquest_miscellaneous_1318692807
crossref_primary_10_1002_bbb_1373
wiley_primary_10_1002_bbb_1373_BBB1373
istex_primary_ark_67375_WNG_K91XKHTT_D
ProviderPackageCode QVL
PublicationCentury 2000
PublicationDate January/February 2013
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: January/February 2013
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle Biofuels, bioproducts and biorefining
PublicationTitleAlternate Biofuels, Bioprod. Bioref
PublicationYear 2013
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References Strik DPBTB, Timmers RA, Helder M, Steinbusch KJJ, Hamelers HVM and Buisman CJN, Microbial solar cells: Applying photosynthetic and electrochemically active organisms. Trends Biotechnol 29(1):41-49 (2011).
Carter ME, Essential Fiber Chemistry, Marcel Dekker, New York (1971).
UNDP, World Energy Assessment - energy and the challenge of sustainability. UNDP, New York (2000).
Strik DPBTB, Hamelers HVM, Snel JFH and Buisman CJN, Green electricity production with living plants and bacteria in a fuel cell. Int J Energ Res 32(9):870-876 (2008).
Timmers RA, Strik DPBTB, Hamelers HVM and Buisman CJN, Long term performance of a plant microbial fuel cell with Spartina anglica. Appl Microbiol Biot 86(3):973-981 (2010).
Fargione J, Hill J, Tilman D, Polasky S and Hawthorne P, Land clearing and the biofuel carbon debt. Science 319(5867):1235-1238 (2008).
Meier MA, Eco-Efficiency Evaluation of Waste Gas Purification Systems in the Chemical Industry. Eco-Informa Press, Zurich, Switzerland (1997).
Strik DPBTB, Hamelers HVM, Snel JFH and Buisman CJN, Green electricity production with living plants and bacteria in a fuel cell. Int J Energ Res 10:1002 (2008).
Helder M, Strik DPBTB, Hamelers HVM, Kuhn AJ, Blok C and Buisman CJN, Concurrent bio-electricity and biomass production in three plant-microbial fuel cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresource Technol 101(10):3541-3547 (2010).
Getter KL, Rowe DB, Robertson GP, Cregg BM and Andresen JA, Carbon sequestration potential of extensive green roofs. Environ Sci Technol 43(19):7564-7570 (2009).
ISO/TC, ISO 14040: Environmental management - Life cycle assessment - Principles and framework. ISO, Geneva, Switzerland (2006).
Kaku N, Yonezawa N, Kodama Y and Watanabe K, Plant/microbe cooperation for electricity generation in a rice paddy field. Appl Microbiol Biotech 79(1):43-49 (2008).
Sleutels THJA, Hamelers HVM, Rozendal RA and Buisman CJN, Ion transport resistance in Microbial Electrolysis Cells with anion and cation exchange membranes. Int J Hydrogen Energ 34(9):3612-3620 (2009).
Foley JM, Rozendal RA, Hertle CK, Lant PA and Rabaey K, Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environ Sci Technol 44(9):3629-3637 (2010).
Pant D, Singh A, Van Bogaert G, Gallego YA, Diels L and Vanbroekhoven K, An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: Relevance and key aspects. Renew Sust Energy Rev 15(2):1305-1313 (2011).
Romero-Hernandez O, To treat or not to treat? Applying chemical engineering tools and a life cycle approach to assessing the level of sustainability of a clean-up technology. Green Chem 6(8):395-400 (2004).
Arends JBA, Blondeel E, Tennison SR, Boon N and Verstraete W, Suitability of granular carbon as an anode material for sediment microbial fuel cells. J Soil Sediment 12(7):1197-1206 (2012).
Pabón Pereira CP, Anaerobic Digestion in Sustainable Biomass Chains. Wageningen University, Wageningen (2009).
Helder M, Strik DPBTB, Hamelers HVM and Buisman CJN, The flat-plate plant-microbial fuel cell: The effect of a new design on internal resistances. Biotechnol Biofuel 5(1):70 (2012).
De Schamphelaire L, Van Den Bossche L, Hai SD, Hofte M, Boon N, Rabaey K et al., Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environ Sci Technol 42(8):3053-3058 (2008).
Niachou A, Papakonstantinou K, Santamouris M, Tsangrassoulis A and Mihalakakou G. Analysis of the green roof thermal properties and investigation of its energy performance. Energ Buildings 33(7):719-729 (2001).
Azapagic A, Life cycle assessment and its application to process selection, design and optimisation. Chem Eng J 73(1):1-21 (1999).
Pehnt M, Dynamic life cycle assessment (LCA) of renewable energy technologies. Renew Energ 31(1):55-71 (2006).
Pehnt M, Life-cycle assessment of fuel cell stacks. Int J Hydrogen Energ 26(1):91-101 (2001).
Lynch JM and Whipps JM, Substrate flow in the rhizosphere. Plant Soil 129(1):1-10 (1990).
Hill J, Nelson E, Tilman D, Polasky S and Tiffany D, Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. P Natl Acad Sci 103(30):11206-11210 (2006).
Helder M, Strik DPBTB, Hamelers HVM, Kuijken RCP, Buisman CJN. New plant-growth medium for increased power output of the plant-microbial fuel cell. Bioresource Technol 104:417-423 (2012).
Sleutels THJA, Ter Heijne A, Buisman CJN and Hamelers HVM, Bioelectrochemical systems: An outlook for practical applications. ChemSusChem 5(6):1012-1019 (2012).
Liu KKY and Minor J (eds), Performance Evaluation of an Extensive Green Roof. NRC Institute for Research in Construction, Washington, DC (2005).
1990; 129
2006; 31
2009; 43
2012
2010; 101
2009
2008
1997
2004; 6
2008; 79
2006
2008; 10
2008; 32
2001; 26
2005
1971
2011; 15
2012; 104
2012; 12
2009; 34
2010; 44
2010; 86
2000
2008; 319
1999; 73
2008; 42
2001; 33
2012; 5
2011; 29
2006; 103
Carter ME (e_1_2_6_33_1) 1971
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
Strik DPBTB (e_1_2_6_5_1) 2008; 10
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
UNDP (e_1_2_6_2_1) 2000
e_1_2_6_9_1
e_1_2_6_8_1
Liu KKY (e_1_2_6_37_1) 2005
e_1_2_6_4_1
ISO/TC (e_1_2_6_17_1) 2006
e_1_2_6_7_1
Pabón Pereira CP (e_1_2_6_35_1) 2009
e_1_2_6_6_1
Meier MA (e_1_2_6_31_1) 1997
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 86
  start-page: 973
  issue: 3
  year: 2010
  end-page: 981
  article-title: Long term performance of a plant microbial fuel cell with
  publication-title: Appl Microbiol Biot
– year: 2009
– volume: 104
  start-page: 417
  year: 2012
  end-page: 423
  article-title: New plant‐growth medium for increased power output of the plant‐microbial fuel cell
  publication-title: Bioresource Technol
– volume: 43
  start-page: 7564
  issue: 19
  year: 2009
  end-page: 7570
  article-title: Carbon sequestration potential of extensive green roofs
  publication-title: Environ Sci Technol
– year: 2005
– volume: 42
  start-page: 3053
  issue: 8
  year: 2008
  end-page: 3058
  article-title: Microbial fuel cells generating electricity from rhizodeposits of rice plants
  publication-title: Environ Sci Technol
– volume: 319
  start-page: 1235
  issue: 5867
  year: 2008
  end-page: 1238
  article-title: Land clearing and the biofuel carbon debt
  publication-title: Science
– volume: 29
  start-page: 41
  issue: 1
  year: 2011
  end-page: 49
  article-title: Microbial solar cells: Applying photosynthetic and electrochemically active organisms
  publication-title: Trends Biotechnol
– year: 2000
– volume: 31
  start-page: 55
  issue: 1
  year: 2006
  end-page: 71
  article-title: Dynamic life cycle assessment (LCA) of renewable energy technologies
  publication-title: Renew Energ
– year: 1971
– volume: 5
  start-page: 1012
  issue: 6
  year: 2012
  end-page: 1019
  article-title: Bioelectrochemical systems: An outlook for practical applications
  publication-title: ChemSusChem
– volume: 15
  start-page: 1305
  issue: 2
  year: 2011
  end-page: 1313
  article-title: An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: Relevance and key aspects
  publication-title: Renew Sust Energy Rev
– year: 2012
– volume: 34
  start-page: 3612
  issue: 9
  year: 2009
  end-page: 3620
  article-title: Ion transport resistance in Microbial Electrolysis Cells with anion and cation exchange membranes
  publication-title: Int J Hydrogen Energ
– volume: 12
  start-page: 1197
  issue: 7
  year: 2012
  end-page: 1206
  article-title: Suitability of granular carbon as an anode material for sediment microbial fuel cells
  publication-title: J Soil Sediment
– volume: 103
  start-page: 11206
  issue: 30
  year: 2006
  end-page: 11210
  article-title: Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels
  publication-title: P Natl Acad Sci
– volume: 10
  start-page: 1002
  year: 2008
  article-title: Green electricity production with living plants and bacteria in a fuel cell
  publication-title: Int J Energ Res
– volume: 33
  start-page: 719
  issue: 7
  year: 2001
  end-page: 729
  article-title: Analysis of the green roof thermal properties and investigation of its energy performance
  publication-title: Energ Buildings
– volume: 129
  start-page: 1
  issue: 1
  year: 1990
  end-page: 10
  article-title: Substrate flow in the rhizosphere
  publication-title: Plant Soil
– volume: 32
  start-page: 870
  issue: 9
  year: 2008
  end-page: 876
  article-title: Green electricity production with living plants and bacteria in a fuel cell
  publication-title: Int J Energ Res
– year: 2008
– year: 2006
– volume: 79
  start-page: 43
  issue: 1
  year: 2008
  end-page: 49
  article-title: Plant/microbe cooperation for electricity generation in a rice paddy field
  publication-title: Appl Microbiol Biotech
– year: 1997
– volume: 73
  start-page: 1
  issue: 1
  year: 1999
  end-page: 21
  article-title: Life cycle assessment and its application to process selection, design and optimisation
  publication-title: Chem Eng J
– volume: 5
  start-page: 70
  issue: 1
  year: 2012
  article-title: The flat‐plate plant‐microbial fuel cell: The effect of a new design on internal resistances
  publication-title: Biotechnol Biofuel
– volume: 6
  start-page: 395
  issue: 8
  year: 2004
  end-page: 400
  article-title: To treat or not to treat? Applying chemical engineering tools and a life cycle approach to assessing the level of sustainability of a clean‐up technology
  publication-title: Green Chem
– volume: 26
  start-page: 91
  issue: 1
  year: 2001
  end-page: 101
  article-title: Life‐cycle assessment of fuel cell stacks
  publication-title: Int J Hydrogen Energ
– volume: 101
  start-page: 3541
  issue: 10
  year: 2010
  end-page: 3547
  article-title: Concurrent bio‐electricity and biomass production in three plant‐microbial fuel cells using Spartina anglica, Arundinella anomala and Arundo donax
  publication-title: Bioresource Technol
– volume: 44
  start-page: 3629
  issue: 9
  year: 2010
  end-page: 3637
  article-title: Life cycle assessment of high‐rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells
  publication-title: Environ Sci Technol
– ident: e_1_2_6_23_1
– ident: e_1_2_6_30_1
  doi: 10.1016/j.renene.2005.03.002
– ident: e_1_2_6_9_1
  doi: 10.1016/j.biortech.2009.12.124
– ident: e_1_2_6_19_1
  doi: 10.1021/es901539x
– volume-title: World Energy Assessment ‐ energy and the challenge of sustainability
  year: 2000
  ident: e_1_2_6_2_1
  contributor:
    fullname: UNDP
– ident: e_1_2_6_7_1
  doi: 10.1007/s00253-008-1410-9
– ident: e_1_2_6_14_1
– ident: e_1_2_6_15_1
  doi: 10.1002/er.1397
– ident: e_1_2_6_27_1
  doi: 10.1007/s11368-012-0537-6
– volume: 10
  start-page: 1002
  year: 2008
  ident: e_1_2_6_5_1
  article-title: Green electricity production with living plants and bacteria in a fuel cell
  publication-title: Int J Energ Res
  contributor:
    fullname: Strik DPBTB
– ident: e_1_2_6_36_1
– ident: e_1_2_6_25_1
  doi: 10.1016/j.ijhydene.2009.03.004
– ident: e_1_2_6_28_1
  doi: 10.1016/S0360-3199(00)00053-7
– ident: e_1_2_6_3_1
  doi: 10.1073/pnas.0604600103
– ident: e_1_2_6_11_1
  doi: 10.1016/j.rser.2010.10.005
– volume-title: Essential Fiber Chemistry
  year: 1971
  ident: e_1_2_6_33_1
  contributor:
    fullname: Carter ME
– ident: e_1_2_6_29_1
  doi: 10.1016/j.biombioe.2012.10.011
– ident: e_1_2_6_16_1
  doi: 10.1016/S1385-8947(99)00042-X
– volume-title: Performance Evaluation of an Extensive Green Roof
  year: 2005
  ident: e_1_2_6_37_1
  contributor:
    fullname: Liu KKY
– ident: e_1_2_6_18_1
  doi: 10.1016/j.tibtech.2010.10.001
– ident: e_1_2_6_24_1
– ident: e_1_2_6_8_1
  doi: 10.1007/BF00011685
– ident: e_1_2_6_21_1
– ident: e_1_2_6_12_1
  doi: 10.1002/cssc.201100732
– ident: e_1_2_6_32_1
– volume-title: Eco‐Efficiency Evaluation of Waste Gas Purification Systems in the Chemical Industry
  year: 1997
  ident: e_1_2_6_31_1
  contributor:
    fullname: Meier MA
– ident: e_1_2_6_4_1
  doi: 10.1126/science.1152747
– ident: e_1_2_6_6_1
  doi: 10.1021/es071938w
– ident: e_1_2_6_26_1
  doi: 10.1186/1754-6834-5-70
– ident: e_1_2_6_38_1
– ident: e_1_2_6_34_1
  doi: 10.1039/b401871k
– ident: e_1_2_6_20_1
  doi: 10.1016/S0378-7788(01)00062-7
– volume-title: Anaerobic Digestion in Sustainable Biomass Chains
  year: 2009
  ident: e_1_2_6_35_1
  contributor:
    fullname: Pabón Pereira CP
– volume-title: Environmental management — Life cycle assessment — Principles and framework
  year: 2006
  ident: e_1_2_6_17_1
  contributor:
    fullname: ISO/TC
– ident: e_1_2_6_10_1
  doi: 10.1007/s00253-010-2440-7
– ident: e_1_2_6_13_1
  doi: 10.1021/es100125h
– ident: e_1_2_6_22_1
  doi: 10.1016/j.biortech.2011.11.005
SSID ssj0056545
Score 2.2757087
Snippet Several renewable and (claimed) sustainable energy sources have been introduced into the market during the last century in an attempt to battle pollution from...
Several renewable and (claimed) sustainable energy sources have been introduced into the market the during the last centuries in an attempt to battle pollution...
SourceID wageningen
swepub
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 52
SubjectTerms Anode material
Anodes
Bio-electricity production and supply
Biochemical fuel cells
Bioelectric phenomena
Biomass
Biomass energy technologies
Biomass productions
Co-products
Commerce
Copper wires
Current collector
design
Electric power generation
Electricity
Electricity production
Electrophysiology
Energy technologies
Energy technology
Environmental impact
Environmental management
Environmental performance
Fossil fuels
Gold coatings
Gold wire
Granular activated carbons
Green roof
Life cycle
Life cycle assessment
Life Cycle Assessment (LCA)
Life cycle engineering
Markets
Microbial fuel cells
plant-microbial fuel cell
Power out put
Power plants
Roofs
Sustainable energy sources
Technology
Wire
Title Electricity production with living plants on a green roof: environmental performance of the plant-microbial fuel cell
URI https://api.istex.fr/ark:/67375/WNG-K91XKHTT-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbbb.1373
https://search.proquest.com/docview/1318692807
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-166220
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F433699
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbY5bJ74I0oj5WRELewiZ04yd62tEullVZIFKi4WH7uVlvSqtmoHPkJ_EZ-CTNO024PSEicLEX2JPZ4xp8n9jeEvGE81Tkgb_B-DDYoNnNRoeMics5Yl2ijM48x3dGn_GJSDIZIk3PS3YVp-SE2ATe0jOCv0cCVro-3pKFa63cJz5HoEzYJeJovG3zrnDDAlJCfGOEJeJp00vHOxuy4a7izEt3FQf2xCzNb6tBDcrAC067CXaddCBvWoLP7__P1D8i9NfKkp-1UeUjuuOoRObzFR_iYrIYhKc7UADSni5YLFvRGMVhLZ1OMPdDFDE_OUHiq6CUe2qGAvf0JvXVjDt6y2N5HoHNPAWW2DX___PV9GrifoJJv3Izin4Mn5PPZcPx-FK0zM0QGbJxHwhamUNwqbopSeJ1zmxZlprwuhFcePIUWwpYu97FVAIAsNy7hzjOdsRRWZf6U7Ffzyj0jNLVc2DQ2ABQTkJ2p3JpSGa6VKGAaqR553WlJLloCDtlSLTMJgyhxEHvkbVDfpoJaXuOBtTyTXy8-yPMymZyPxmM5AGGdfiWYEfZQVW7e1CAGc3MhNRAIaxW_kYYM3IPpl1M5X17K65srmQjBWNwjfDsxZIWpn-pQd61_uWqWspphAdJqmXIuyhLEh3nx187Ifr-P5fN_rfiCHLCQowPjQi_J_s2yca_IXm2bI7LH-cejYBl_AP2-FQs
link.rule.ids 230,315,782,786,887,1405,1408,27934,27935,46065,46166,46489,46590
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELb2cWD3wBtRXmskxC1sEidOAqct7VLUpRcKVFwsP3er7aZVu1E58hP4jfwSZpym3R6QkDhFiuxJ7Hn4y8T-hpBXMUtUBsgbol8MHygmtUGuwjywVhsbKa1Shznd3udsMMo7XaTJedechan5IdYJN_QMH6_RwTEhfbxhDVVKvYlYxnbJfsLTAus2pJ3vTRgGoOIrFCNAgViTjBrm2TA-bnpurUX7OK0_toFmTR56SA6W4NylP-20DWL9KnR657_e_y65vQKf9KS2lntkx5b3yeENSsIHZNn1dXHGGtA5ndV0sKA6ivlaOhlj-oHOJrh5hsJdSc9x3w4F-O3e0huH5uAps82RBDp1FIBm3fH3z19XY0__BI1cZScUfx48JF9Ou8P3vWBVnCHQ4OYs4CbXuWRGMp0X3KmMmSQvUulUzp10ECwU56awmQuNBAxkmLYRsy5WaZzAwswekb1yWtrHhCaGcZOEGrBiBLJTmRldSM2U5DlYkmyRl42axKzm4BA123IsYBIFTmKLvPb6WzeQ80vcs5al4tvgg-gX0ajfGw5FB4Q1ChbgSThCWdpptQAxWJ4L2YFAWK35tTQk4e6Mv56I6fxcXF5fiIjzOA5bhG0sQ5RY_Wnh264MQCyruSgneAFpC5EwxosCxHvD-OtgRLvdxuuTf214RG71hp_OxNnHQf8pOYh9yQ5MEz0je9fzyj4nuwtTvfAO8ge_OhhZ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF7RVkLtgXdFymuRELdQ22uv7d4akhAUFFUiQG6rfZaoqWMltcKRn8Bv5Jcws46T5oCExMmStTv27uzMfh7PfkPIm4jFKgXkDd4vgg8Uk9h2poKsba02NlRaJQ5juoPP6WiSdXtIk3PWnIWp-SE2ATe0DO-v0cBL4063pKFKqXchS9keOYgBhWM6H2MXjRcGnOILFCM-AVcTTxri2SA6bXrubEUHOKs_dnFmzR16RA5XYNuFP-y0i2H9JtS__z-v_4DcW0NPel6vlYfkji0ekaNbhISPyarnq-JMNWBzWtZksKA4itFaOpti8IGWM0ydoXBX0kvM2qEAvt0ZvXVkDp5Sbg8k0LmjADPrjr9__rqeevInaOQqO6P46-AJ-dLvjd8P2uvSDG0NRs7a3GQ6k8xIprOcO5UyE2d5Ip3KuJMOXIXi3OQ2dYGRgIAM0zZk1kUqiWLYltkx2S_mhX1KaGwYN3GgASmGIDuRqdG51ExJnsE6ki3yutGSKGsGDlFzLUcCJlHgJLbIW6--TQO5uMKMtTQR30YfxDAPJ8PBeCy6IKzRrwA7whHKws6rJYjB4lzIDQTCasVvpCEFd3f69VzMF5fi6ua7CDmPoqBF2HZhiAJrPy1927X-xapaiGKGF5C2FDFjPM9BvF8Xfx2M6HQ6eD3514avyN2Lbl98-jgaPiOHka_XgTGi52T_ZlHZF2RvaaqX3jz-ABSvFsw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electricity+production+with+living+plants+on+a+green+roof%3A+environmental+performance+of+the+plant%E2%80%90microbial+fuel+cell&rft.jtitle=Biofuels%2C+bioproducts+and+biorefining&rft.au=Helder%2C+Marjolein&rft.au=Chen%2C+Wei%E2%80%90Shan&rft.au=Harst%2C+Eugenie+J.M.&rft.au=Strik%2C+David+P.B.T.B.&rft.date=2013-01-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=1932-104X&rft.eissn=1932-1031&rft.volume=7&rft.issue=1&rft.spage=52&rft.epage=64&rft_id=info:doi/10.1002%2Fbbb.1373&rft.externalDBID=10.1002%252Fbbb.1373&rft.externalDocID=BBB1373
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-104X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-104X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-104X&client=summon