Characterization, kinetic, and isotherm data for adsorption of Pb2+ from aqueous solution by adsorbent from mixture of bagasse-bentonite

The usage of wastes of bagasse would be admirable from environmental and solid waste management point of view. Thus, herein, this data set present a facile method for providing an adsorbent from mixture of bagasse-bentonite. The prepared adsorbent was applied to remove Pb2+ from aqueous solution. It...

Full description

Saved in:
Bibliographic Details
Published in:Data in brief Vol. 16; pp. 622 - 629
Main Authors: Kuncoro, Eko Prasetyo, Isnadina, Dwi Ratri Mitha, Darmokoesoemo, Handoko, Fauziah, Oktiani Rahmanita, Kusuma, Heri Septya
Format: Journal Article
Language:English
Published: Elsevier Inc 01-02-2018
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The usage of wastes of bagasse would be admirable from environmental and solid waste management point of view. Thus, herein, this data set present a facile method for providing an adsorbent from mixture of bagasse-bentonite. The prepared adsorbent was applied to remove Pb2+ from aqueous solution. It was conducted in laboratory scale using completely randomized design with variations in mixed mass ratio (1:0, 1:1, 1:2, 1:3, 2:1, 3:1), pH (2, 3, 4, 5, 6, 7) and contact time (5, 10, 30, 45, 90, 120, 180min) and the adsorption technique was batch technique. The mixed adsorbent with 3:1 of mass ratio provided the highest Pb2+ adsorption efficiency of 97.31%. The optimum pH of Pb2+ adsorption was 5 and contact time was efficient at 45min giving adsorption efficiency of 94.76% and 93.38%. The characterization data of the adsorbent were analyzed using XRF and FTIR methods. The XRF test results showed the changes of elemental content in adsorbent after the adsorption indicated that adsorbent can absorb Pb2+. The FTIR test results showed that adsorbent has a functional group that is useful in adsorption process. Adsorption of Pb2+ by adsorbent from mixture of bagasse-bentonite follows pseudo second order model with correlation coefficient value of 99.99% (R2 = 0.9999) and Freundlich isotherm model with correlation coefficient value of 90.05% (R2 = 0.9005). The acquired data indicated that the adsorption of Pb2+ by the adsorbent prepared from mixture of bagasse-bentonite is a promising technique for treating Pb-bearing wastewaters.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2352-3409
2352-3409
DOI:10.1016/j.dib.2017.11.098