An on-line method for the reduction of fouling of spin-filters for animal cell perfusion cultures
The main limitation in the use of spin-filters during perfusion cultures of animal cells was revealed to be filter fouling. This phenomenon involves cell–sieve interactions as well as cell attachment to, and growth on, the filter surface. The cell attachment effect has been analysed in the present s...
Saved in:
Published in: | Journal of biotechnology Vol. 130; no. 3; pp. 265 - 273 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Lausanne
Elsevier B.V
30-06-2007
Amsterdam Elsevier New York, NY |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The main limitation in the use of spin-filters during perfusion cultures of animal cells was revealed to be filter fouling. This phenomenon involves cell–sieve interactions as well as cell attachment to, and growth on, the filter surface. The cell attachment effect has been analysed in the present study during long-term perfusion simulations with CHO animal cells. It was demonstrated that at low filter acceleration, below 6.2
m/s
2, a high perfusion rate of 25
cm/h induced rapid filter pore clogging within 3 days, whereas increasing the filter acceleration to 25
m/s
2 increased filter longevity from 3 to 25 days, for filters with a pore size of 8.5
μm. Increasing the filter pore size to 14.5
μm improved filter longevity by 84% with less viable and dead cell deposits on the filter surface. However, it was demonstrated that filter longevity was not necessarily dependent on the amount of cell deposit on the filter surface. In the second part of this study, ultrasonic technology was used to reduce filter fouling. Filter vibration, induced by a piezo actuator, improved filter longevity by 113% during CHO cells perfusion cultures. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0168-1656 1873-4863 |
DOI: | 10.1016/j.jbiotec.2007.04.007 |