Re-aeration – induced oxidative stress and antioxidative defenses in hypoxically pretreated lupine roots

The level of free radicals and activities of antioxidative enzymes were examined in roots of lupine seedlings ( Lupinus luteus L.) that were deprived of oxygen by subjecting them to root hypoxia for 48 and 72 h and then re-aerated for up to 24 h. Using electron paramagnetic resonance (EPR), we found...

Full description

Saved in:
Bibliographic Details
Published in:Journal of plant physiology Vol. 161; no. 4; pp. 415 - 422
Main Authors: Garnczarska, Małgorzata, Bednarski, Waldemar, Morkunas, Iwona
Format: Journal Article
Language:English
Published: Jena Elsevier GmbH 01-04-2004
Elsevier
Elsevier Science Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The level of free radicals and activities of antioxidative enzymes were examined in roots of lupine seedlings ( Lupinus luteus L.) that were deprived of oxygen by subjecting them to root hypoxia for 48 and 72 h and then re-aerated for up to 24 h. Using electron paramagnetic resonance (EPR), we found that the exposure of previously hypoxically grown roots to air caused the increase in free radicals level, irrespective of duration of hypoxic pretreatment. Immediately after re-aeration the level of free radicals was two times higher than in aerated control. The EPR signal with the g-values at the maximum absorption of 2.0057 and 2.0040 implied that the paramagnetic radicals are derived from a quinone. Directly after re-aeration of hypoxically pretreated roots, the activity of superoxide dismutase (SOD, EC 1.15.1.1) increased to its highest value, followed by a decline below the initial level, whereas activities of catalase (CAT, EC 1.11.1.6) and peroxidase (POX, EC 1.11.1.7) were diminished or only slightly influenced during re-aeration. The electrophoretic patterns of the soluble extracts show 4 isozymes of SOD, 4 isozymes of POX and 1 isozyme of CAT. The level of H 2O 2 was enhanced or lowered by re-aeration, depending on the previous duration of hypoxia. At the onset of re-aeration products of lipid peroxidation were present at a three-fourth of the levels found in aerobic control. Their levels increased after prolonged exposure to air but remained lower than those in aerobic control even after 24 h of re-aeration. Re-admission of oxygen resulted in about 20 % rise in oxygen uptake by root axes segments immediately after transfer of roots from hypoxia and the high uptake rates were observed over whole re-aeration period. Oxygen consumption by root tips was significantly reduced just after transfer from hypoxic conditions as compared to aerated control but after 24 h of re-aeration even approached the control level. The results are discussed in relation to the ability of lupine roots to cope with oxidative stress caused by re-aeration following hypoxic pretreatment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0176-1617
1618-1328
DOI:10.1078/0176-1617-01073