Ashkin-teller criticality and pseudo-first-order behavior in a frustrated Ising model on the square lattice
We study the challenging thermal phase transition to stripe order in the frustrated square-lattice Ising model with couplings J(1) < 0 (nearest-neighbor, ferromagnetic) and J(2) > 0 (second-neighbor, antiferromagnetic) for g = J(2)/|J(1| > 1/2. Using Monte Carlo simulations and known analyt...
Saved in:
Published in: | Physical review letters Vol. 108; no. 4; p. 045702 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
24-01-2012
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the challenging thermal phase transition to stripe order in the frustrated square-lattice Ising model with couplings J(1) < 0 (nearest-neighbor, ferromagnetic) and J(2) > 0 (second-neighbor, antiferromagnetic) for g = J(2)/|J(1| > 1/2. Using Monte Carlo simulations and known analytical results, we demonstrate Ashkin-Teller criticality for g ≥ g*; i.e., the critical exponents vary continuously between those of the 4-state Potts model at g = g* and the Ising model for g → ∞. Thus, stripe transitions offer a route to realizing a related class of conformal field theories with conformal charge c = 1 and varying exponents. The transition is first order for g < g* = 0.67 ± 0.01, much lower than previously believed, and exhibits pseudo-first-order behavior for |g* ≤ g </~1. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.108.045702 |