Theoretical investigation of one-dimensional cavities in two-dimensional photonic crystals
We study numerically the features of the resonant peak of one-dimensional (1-D) dielectric cavities in a two-dimensional (2-D) hexagonal lattice. We use both the transfer matrix method and the finite difference time-domain (FDTD) method to calculate the transmission coefficient. We compare the two m...
Saved in:
Published in: | IEEE journal of quantum electronics Vol. 38; no. 7; pp. 844 - 849 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-07-2002
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study numerically the features of the resonant peak of one-dimensional (1-D) dielectric cavities in a two-dimensional (2-D) hexagonal lattice. We use both the transfer matrix method and the finite difference time-domain (FDTD) method to calculate the transmission coefficient. We compare the two methods and discuss their results for the transmission and quality factor Q of the resonant peak. We also examine the dependence of Q on absorption and losses, the thickness of the sample, and the lateral width of the cavity. The Q-factor dependence on the width of the source in the FDTD calculations is also given. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0018-9197 1558-1713 |
DOI: | 10.1109/JQE.2002.1017596 |