Mapping of genetic loci that regulate quantity of beta-carotene in fruit of US Western Shipping melon (Cucumis melo L.)

Melon (Cucumis melo L.) is highly nutritious vegetable species and an important source of β-carotene (Vitamin A), which is an important nutrient in the human diet. A previously developed set of 81 recombinant inbred lines (RIL) derived from Group Cantalupensis US Western Shipper market type germplas...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical and applied genetics Vol. 117; no. 8; pp. 1345 - 1359
Main Authors: Cuevas, H. E, Staub, J. E, Simon, P. W, Zalapa, J. E, McCreight, J. D
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Berlin/Heidelberg : Springer-Verlag 01-11-2008
Springer-Verlag
Springer
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Melon (Cucumis melo L.) is highly nutritious vegetable species and an important source of β-carotene (Vitamin A), which is an important nutrient in the human diet. A previously developed set of 81 recombinant inbred lines (RIL) derived from Group Cantalupensis US Western Shipper market type germplasm was examined in two locations [Wisconsin (WI) and California (CA), USA] over 2 years to identify quantitative trait loci (QTL) associated with quantity of beta-carotene (QβC) in mature fruit. A moderately saturated 256-point RIL-based map [104 SSR, 7 CAPS, 4 SNP in putative carotenoid candidate genes, 140 dominant markers and one morphological trait (a) spanning 12 linkage groups (LG)] was used for QβC-QTL analysis. Eight QTL were detected in this evaluation that were distributed across four LG that explained a significant portion of the associated phenotypic variation for QβC (R ² = 8 to 31.0%). Broad sense heritabilities for QβC obtained from RIL grown in WI. and CA were 0.56 and 0.68, respectively, and 0.62 over combined locations. The consistence of QβC in high/low RIL within location across years was confirmed in experiments conducted over 2 years. QTL map positions were not uniformly associated with putative carotenoid genes, although one QTL (β-car6.1) interval was located 10 cM from a β-carotene hydroxylase gene. These results suggest that accumulation of β-carotene in melon is under complex genetic control. This study provides the initial step for defining the genetic control of QβC in melon leading to the development of varieties with enhanced β-carotene content.
Bibliography:http://dx.doi.org/10.1007/s00122-008-0868-2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0040-5752
1432-2242
DOI:10.1007/s00122-008-0868-2