Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans
We report the discovery and translational therapeutic efficacy of a peptide with potent, balanced co-agonism at both of the receptors for the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). This unimolecular dual incretin is derived from an i...
Saved in:
Published in: | Science translational medicine Vol. 5; no. 209; p. 209ra151 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
30-10-2013
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report the discovery and translational therapeutic efficacy of a peptide with potent, balanced co-agonism at both of the receptors for the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). This unimolecular dual incretin is derived from an intermixed sequence of GLP-1 and GIP, and demonstrated enhanced antihyperglycemic and insulinotropic efficacy relative to selective GLP-1 agonists. Notably, this superior efficacy translated across rodent models of obesity and diabetes, including db/db mice and ZDF rats, to primates (cynomolgus monkeys and humans). Furthermore, this co-agonist exhibited synergism in reducing fat mass in obese rodents, whereas a selective GIP agonist demonstrated negligible weight-lowering efficacy. The unimolecular dual incretins corrected two causal mechanisms of diabesity, adiposity-induced insulin resistance and pancreatic insulin deficiency, more effectively than did selective mono-agonists. The duration of action of the unimolecular dual incretins was refined through site-specific lipidation or PEGylation to support less frequent administration. These peptides provide comparable pharmacology to the native peptides and enhanced efficacy relative to similarly modified selective GLP-1 agonists. The pharmacokinetic enhancement lessened peak drug exposure and, in combination with less dependence on GLP-1-mediated pharmacology, avoided the adverse gastrointestinal effects that typify selective GLP-1-based agonists. This discovery and validation of a balanced and high-potency dual incretin agonist enables a more physiological approach to management of diseases associated with impaired glucose tolerance. |
---|---|
ISSN: | 1946-6242 |
DOI: | 10.1126/scitranslmed.3007218 |