X-ray-facilitated redox cycling of nanozyme possessing peroxidase-mimicking activity for reactive oxygen species-enhanced cancer therapy

Nanomaterials with shifting or mixed redox states is one of the most common studied nanozyme with peroxidase-like activity for chemodynamic therapy (CDT), which can decompose hydrogen peroxide (H2O2) of tumor microenvironment into highly toxic reactive oxygen species (ROS) by a nano-catalytic way. H...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials Vol. 276; p. 121023
Main Authors: Zhang, Chenyang, Wang, Xin, Dong, Xinghua, Mei, Linqiang, Wu, Xiaochen, Gu, Zhanjun, Zhao, Yuliang
Format: Journal Article
Language:English
Published: Elsevier Ltd 01-09-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanomaterials with shifting or mixed redox states is one of the most common studied nanozyme with peroxidase-like activity for chemodynamic therapy (CDT), which can decompose hydrogen peroxide (H2O2) of tumor microenvironment into highly toxic reactive oxygen species (ROS) by a nano-catalytic way. However, most of them exhibit an insufficient catalytic efficiency due to their dependence on catalytic condition. Herein, a potential methodology is proposed to enhance their enzymatic activity by accelerating the redox cycling of these nanomaterials with shifting or mixed redox states in the presence of X-ray. In this study, the nanocomposite consisting of SnS2 nanoplates and Fe3O4 quantum dots with shifting or mixed redox states (Fe2+/Fe3+) is used to explore the strategy. Under external X-ray irradiation, SnS2 cofactor as electron donor can be triggered to transfer electrons to Fe3O4, which promotes the regeneration of Fe2+ sites on the surface of the Fe3O4. Consequently, the regenerated Fe2+ sites react with the overexpressed H2O2 to persistently generate ROS for enhanced tumor therapy. The designed nanocomposite displays the synergistic effects of radiotherapy and CDT. The strategy provides a new avenue for the development of artificial nanozymes with shifting or mixed redox states in precise cancer treatments based on X-ray-enhanced enzymatic efficacy.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2021.121023