Enhancing structural diversity through chemical engineering of Ambrosia tenuifolia extract for novel anti-glioblastoma compounds
Natural products are an unsurpassed source of leading structures in drug discovery. The biosynthetic machinery of the producing organism offers an important source for modifying complex natural products, leading to analogs that are unattainable by chemical semisynthesis or total synthesis. In this r...
Saved in:
Published in: | Scientific reports Vol. 14; no. 1; pp. 14229 - 14 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
20-06-2024
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Natural products are an unsurpassed source of leading structures in drug discovery. The biosynthetic machinery of the producing organism offers an important source for modifying complex natural products, leading to analogs that are unattainable by chemical semisynthesis or total synthesis. In this report, through the combination of natural products chemistry and diversity-oriented synthesis, a diversity-enhanced extracts approach is proposed using chemical reactions that remodel molecular scaffolds directly on extracts of natural resources. This method was applied to subextract enriched in sesquiterpene lactones from
Ambrosia tenuifolia
(Fam. Asteraceae) using acid media conditions (
p
-toluenesulfonic acid) to change molecular skeletons. The chemically modified extract was then fractionated by a bioguided approach to obtain the pure compounds responsible for the anti-glioblastoma (GBM) activity in T98G cell cultures. Indeed, with the best candidate, chronobiological experiments were performed to evaluate temporal susceptibility to the treatment on GBM cell cultures to define the best time to apply the therapy. Finally, bioinformatics tools were used to supply qualitative and quantitative information on the physicochemical properties, chemical space, and structural similarity of the compound library obtained. As a result, natural products derivatives containing new molecular skeletons were obtained, with possible applications as chemotherapeutic agents against human GBM T98G cell cultures. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-63639-y |