O-GlcNAcylation of ATG4B positively regulates autophagy by increasing its hydroxylase activity
Autophagy is a catabolic degradation process and maintains cellular homeostasis. And autophagy is activated in response to various stress conditions. Although O-GlcNAcylation functions a sensor for nutrient and stress, the relationship between O-GlcNAcylation and autophagy is largely unknown. Here,...
Saved in:
Published in: | Oncotarget Vol. 7; no. 35; pp. 57186 - 57196 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Impact Journals LLC
30-08-2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Autophagy is a catabolic degradation process and maintains cellular homeostasis. And autophagy is activated in response to various stress conditions. Although O-GlcNAcylation functions a sensor for nutrient and stress, the relationship between O-GlcNAcylation and autophagy is largely unknown. Here, we identified that ATG4B is novel target for O-GlcNAcylation under metabolic stress condition. Treatment with PugNAc, an O-GlcNAcase inhibitor increased activation of autophagy in SH-SY5Y cells. Both bimolecular fluorescence complementation and immunoprecipitation assay indicated that OGT directly interacts with ATG4B in SH-SY5Y cells. We also found that the O-GlcNAcylated ATG4B was increased in autophagy activation conditions, and down-regulation of OGT reduces O-GlcNAcylation of ATG4B under low glucose condition. Furthermore, the proteolytic activity of ATG4B for LC3 cleavage was enhanced in PugNAc-treated cells. Taken together, these results imply that O-GlcNAcylation of ATG4B regulates autophagy activation by increasing its proteolytic activity under metabolic stress condition. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1949-2553 1949-2553 |
DOI: | 10.18632/oncotarget.11083 |