Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders
Deep neural networks are increasingly used in medical imaging for tasks such as pathological classification, but they face challenges due to the scarcity of high-quality, expert-labeled training data. Recent efforts have utilized pre-trained contrastive image-text models like CLIP, adapting them for...
Saved in:
Published in: | Scientific reports Vol. 14; no. 1; pp. 23199 - 11 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
05-10-2024
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Deep neural networks are increasingly used in medical imaging for tasks such as pathological classification, but they face challenges due to the scarcity of high-quality, expert-labeled training data. Recent efforts have utilized pre-trained contrastive image-text models like CLIP, adapting them for medical use by fine-tuning the model with chest X-ray images and corresponding reports for zero-shot pathology classification, thus eliminating the need for pathology-specific annotations. However, most studies continue to use the same contrastive learning objectives as in the general domain, overlooking the multi-labeled nature of medical image-report pairs. In this paper, we propose a new fine-tuning strategy that includes positive-pair loss relaxation and random sentence sampling. We aim to improve the performance of zero-shot pathology classification without relying on external knowledge. Our method can be applied to any pre-trained contrastive image-text encoder and easily transferred to out-of-domain datasets without further training, as it does not use external data. Our approach consistently improves overall zero-shot pathology classification across four chest X-ray datasets and three pre-trained models, with an average macro AUROC increase of 4.3%. Additionally, our method outperforms the state-of-the-art and marginally surpasses board-certified radiologists in zero-shot classification for the five competition pathologies in the CheXpert dataset. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-73695-z |